RESUMO
Drug-resistant parasitic nematodes pose a grave threat to plants, animals, and humans. An innovative paradigm for treating parasitic nematodes is emphasized in this opinion. This approach relies on repurposing methuosis (a death characterized by accumulation of large vacuoles) inducing anticancer drugs as anthelmintics. We review drugs/chemicals that have shown to kill nematodes or cancerous cells by inducing multiple vacuoles that eventually coalesce and rupture. This perspective additionally offers a succinct summary on Structure-Activity Relationship (SAR) of methuosis-inducing small molecules. This strategy holds promise for the development of broad-spectrum anthelmintics, shedding light on shared molecular mechanisms between cancer and nematodes in response to these inducers, thereby potentially transforming both therapeutic domains.
Assuntos
Anti-Helmínticos , Antineoplásicos , Reposicionamento de Medicamentos , Humanos , Animais , Anti-Helmínticos/farmacologia , Antineoplásicos/farmacologia , Nematoides/efeitos dos fármacos , Neoplasias/tratamento farmacológicoRESUMO
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Halogênios/química , Halogenação , Relação Estrutura-AtividadeRESUMO
Staphylococcus aureus poses significant risks to public health due to its ability to form biofilm and produce virulence factors, contributing to the increase in antibiotic resistance and treatment complications. This emphasizes the urgent need for novel antimicrobial controls. Based on the premise that halogenation improves antimicrobial efficacy, this study investigated the ability of halogenated phenylalanine to effectively inhibit S. aureus biofilm formation and virulence activities. Among 29 halogenated compounds, Fmoc-4-iodo-phenylalanine (Fmoc-Iodo-Phe) displayed the highest antibiofilm effect against S. aureus, achieving 94.3 % reduction at 50 µg/mL. Microscopic studies confirmed its ability to prevent and disrupt mature biofilms. At 10 µg/mL, Fmoc-Iodo-Phe markedly inhibited virulence factors, such as cell surface hydrophobicity, hemolysin and slime production. It showed low propensity for resistance development and effectively inhibited biofilms formed by methicillin-resistant S. aureus (MRSA) and S. epidermidis, but was inactive against Gram-negative bacteria. Gene expression analysis complemented by molecular docking suggest that Fmoc-Iodo-Phe could target the AgrA quorum sensing cascade due to strong interactions with key residues at its DNA binding sites. Notably, it was non-cytotoxic in Caenorhabditis elegans model and satisfied drug-likeliness criteria based on ADMET prediction. Therefore, our findings position Fmoc-Iodo-Phe as a promising antimicrobial candidate against S. aureus infections, underscoring its potential as an alternative to traditional antibiotics.
RESUMO
This investigation was designed and performed to compare the phytochemical profiling, activities of antibacterial, thrombolytic, anti-inflammatory, and cytotoxicity of methanol extract (ME-E) and aqueous extract (AQ-E) of aerial parts of Achyranthes aspera through in-vitro approach. Also characterize the functional groups of bioactive compounds in the ME-E through Fourier-transform infrared (FTIR) spectroscopy analysis. Interestingly, qualitative phytochemical screening proved that the ME-E contain more number of vital phytochemicals such as phenolics. saponins, tannins, alkaloids, flavonoids, cardiac glycosides, steroids, and phlobatannins than AQ-E. Similarly, the ME-E showed notable antibacterial activity as dose dependent manner against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa at 1000 µg mL-1 concentration. ME-E also showed 75.2 ± 2% of clot lysis (thrombolytic activity) at 1000 µg mL-1 dosage and it followed by AQ-E 51.24 ± 3%. The ME-E showed moderate and AQ-E demonstrate poor anti-inflammatory activity evidenced by albumin denaturation inhibition and anti-lipoxygenase assays. Furthermore, the ME-E demonstrated a dose dependent cytotoxicity was noted against brine shrimp larvae. In support of this ME-E considerable activities, the Fourier transform infrared (FTIR) analysis confirmed that this extract contain more number peaks attributed to the stretch of various essential functional groups belongs to different bioactive compounds. Hence this ME-E of A. aspera can be considered for further in depth scientific investigations to validate their maximum biomedical potential.
Assuntos
Achyranthes , Extratos Vegetais , Extratos Vegetais/toxicidade , Antibacterianos/toxicidade , Antibacterianos/análise , Metanol/análise , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/análise , Componentes Aéreos da Planta/químicaRESUMO
In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.
Assuntos
Biocombustíveis , Jatropha , Micro-Ondas , Óleos de Plantas , Biocombustíveis/análise , Jatropha/química , Óleos de Plantas/química , Catálise , Zeolitas/química , Difração de Raios X , ReciclagemRESUMO
The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity. Zn-Cd-Sn-S (ZCSS) nanostructures were evaluated for their photocatalytic degrading potential by using pyrene as a model pollutant and evaluating the effects of parameters like initial pyrene concentration, nanocatalyst dosage, solution pH, and light sources during batch adsorption. Nanostructures had a size of 16.74 nm according to the XRD analysis. With a 300 min time interval, ZCSS nanostructures achieved the highest removal rate of 86.3%. Pyrene degradation metabolites were identified using GC-MS analysis of the degraded samples. A Freundlich isothermal (R2 0.9) and pseudo-first-order (R2 0.952) reaction kinetic path best fit the adsorption results for pyrene by the fabricated ZCSS nanostructure, based on the adsorption and kinetic studies. Zn-Cd-Sn-S exhibited the highest antibacterial activity against Staphylococcusaureus (22.4 mM). Due to the combined synergistic actions of the constituent metals, this quaternary nanostructure exhibited exceptional photocatalytic activity. To our est knowledge, the ZCSS nanostructure was made and used to remove pyrene by photocatalysis and fight microbes. Ultimately, the ZCSS nanostructure was found to be an effective photocatalyst for eradicating pathogenic microbes from water.
Assuntos
Nanoestruturas , Pirenos , Pirenos/química , Nanoestruturas/química , Poluentes Químicos da Água/química , Zinco/química , Cádmio/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
The aim of the work is to find the efficiency of solar power in biodiesel preparation from mackerel fish. The paper also focusses on the ability of MgO/graphene prepared by one-pot synthesis using combustion methodology. The physicochemical properties of the material were analysed by XRD, N2 sorption studies, BET sorption analysis and SEM. The adsorption studies revealed the porosity of the graphene is intact, and the morphology studies indicated that MgO is uniformly distributed on the graphene surface. The highest biodiesel yield of 98.95% was obtained using the solar-powered Fresnel solar concentrator at 12.30 p.m in 6 min reaction time using 3 wt% MgO/GO catalyst at 65 °C. Conventional heating produced only 75% biodiesel at the same reaction condition, consuming25 min to complete. The solar assisted biodiesel had better HHV of 37.81 MJ/Kg, viscosity of 4.3 mm2/s, pour point of -15 °C, and a density of 0.875 g/mL. The optimized catalyst showed a shelf life of 5 cycles. The results portray the efficacy of natural energy source in alternative liquid fuel production.
Assuntos
Biocombustíveis , Grafite , Óxido de Magnésio , Biocombustíveis/análise , Grafite/química , Óxido de Magnésio/química , Catálise , Animais , Energia SolarRESUMO
This research was performed to assess the influence of Cd and Cr metals on growth, pigments, antioxidant, and genomic stability of Oryza sativa indica and Oryza sativa japonica were investigated under hydroponic conditions. The results revealed that significant metal influence on test crop growth, pigment content, metal stress balancing antioxidant activity in a dose dependent manner. Since, while at elevated (500 ppm) concentration of Cd as well as Cr metals the pigment (total chlorophyll, chlorophyll a, b and carotenoids) level was reduced than control; however antioxidant activity (total antioxidant, H2O2, and NO) was considerably improved as protective mechanisms to combat the metal toxicity and support the plant growth. Furthermore, the test crops under typical hydroponic medium (loaded with Cd and Cr as 200, 300, 400, and 500 ppm) growth conditions, effectively absorb the metals from medium and accumulated in the root and least quantity was translocated to the shoot of this test crops. Furthermore, typical RAPD analysis with 10 universal primers demonstrated that the genomic DNA of the test crops was adaptable to develop metal resistance and ensure crop growth under increased concentrations (500 ppm) of tested heavy metals. These findings suggest that these edible crops have the ability to accumulate Cd along with Cr metals, and additionally that their genetic systems have the ability to adapt to metal-stressed environments.
Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cromo/toxicidade , Cromo/análise , Antioxidantes/farmacologia , Oryza/genética , Cádmio/toxicidade , Cádmio/análise , Clorofila A/análise , Clorofila A/farmacologia , Hidroponia , Peróxido de Hidrogênio , Técnica de Amplificação ao Acaso de DNA Polimórfico , Metais Pesados/toxicidade , Metais Pesados/análise , Produtos Agrícolas , Poluentes do Solo/toxicidade , Poluentes do Solo/análiseRESUMO
The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.
Assuntos
Níquel , Hidrocarbonetos Policíclicos Aromáticos , Níquel/química , Hidrocarbonetos Policíclicos Aromáticos/química , Nanopartículas Metálicas/química , Catálise , Fotólise , Raios Ultravioleta , Nanopartículas/química , Concentração de Íons de Hidrogênio , Antracenos/química , AdsorçãoRESUMO
This study examines catalytic ability of various zeolite materials in converting discarded tire pyrolyzed oil by employing a moderate sized pyrolysis plant of a 10 L working volume. The study revealed that the yield of liquid fractions using γ-Al2O3 was greater than that of HZSM-5 and HY, while the yield of condensates were limited in the absence of catalyst. The tire waste pyrolysis oil catalytcially enhanced by alumina catalyst analyzed using Fourier transform infrared spectroscopy exhibited the stretching bands corresponding to aromatic and non-aromatic compounds. The GC MS analysis revealed that the cyclic unsaturated fragment percentages in liquids were decreased by the catalysts to 53.9% with HY, 59.0% with γ-Al2O3, and 62.2% with HZSM-5, which in turn was converted into aromatic chemicals. Nitrogen adsorption desorption analysis revealed that γ-Al2O3 has an enhanced surface area of 635 m2/g which improved its catalytic performance. The cracked liquid oil had viscosity (10.36 cSt), values of pour and flash temperatures of -2.2 °C and 41 °C respectively, analogous to petroleum diesel. The upgraded pyrolysis oil (10%) is blended with gasoline (90%), and emission analysis was performed. Moreover, liquid oil needs post treatment (refining) for its use as energy source in transportation application. The novelty of this research is in its comparative analysis of multiple catalysts under controlled conditions using a small pilot-scale pyrolysis reactor, which provides insights into optimizing the pyrolysis process for industrial applications.
Assuntos
Óxido de Alumínio , Pirólise , Zeolitas , Zeolitas/química , Óxido de Alumínio/química , Catálise , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The utilization of bio-oil derived from biomass presents a promising alternative to fossil fuels, though it faces challenges when directly applied in diesel engines. Microemulsification has emerged as a viable strategy to enhance bio-oil properties, facilitating its use in hybrid fuels. This study explores the microemulsification of Jatropha bio-oil with ethanol, aided by a surfactant, to formulate a hybrid liquid fuel. Additionally, a bio-nano CaO heterogeneous catalyst synthesized from eggshells is employed to catalyse the production of Jatropha biodiesel from the microemulsified fuel using microwave irradiation. The catalyst is characterized through UV-Vis, XRD, and SEM analysis. The investigation reveals a significant reduction in CO, CO2, and NOX emissions with the utilization of microemulsion-based biodiesel blends. Various blends of conventional diesel, Jatropha biodiesel, and ethanol are prepared with different ethanol concentrations (5, 10, and 20 wt%). Engine performance parameters, including fuel consumption, NOX emission, and brake specific fuel consumption, are analyzed. Results indicate that the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend exhibits superior performance compared to conventional diesel, Jatropha biodiesel, and other blends. The fuel consumption of the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend is measured at 554.6 g/h, surpassing that of conventional diesel and other biodiesel blends. The presence of water (0.14 %) in the blend reduces the heating value, consequently increasing the energy requirement. CO and CO2 emissions for the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend are notably lower compared to conventional C-18 hydrocarbons and various biodiesel blends. These findings accentuate the efficacy of the microemulsion process in enhancing fuel characteristics and reducing emissions. Further investigations could explore optimizing the emulsifying agents and their impact on engine performance and emission characteristics, contributing to the advancement of sustainable fuel technologies.
Assuntos
Biocombustíveis , Casca de Ovo , Jatropha , Óxidos , Biocombustíveis/análise , Casca de Ovo/química , Jatropha/química , Catálise , Óxidos/química , Animais , Emulsões , Compostos de Cálcio/química , Etanol/química , Emissões de Veículos/análiseRESUMO
The increase in antimicrobial resistance (AMR) in microorganisms is a significant global health concern. Various factors contribute to AMR, including alterations in cell membrane permeability, increased efflux pump activity, enzymatic modification or inactivation of antibiotics, target site changes, alternative metabolic pathways, and biofilm formation. Marine environments, with their extensive biodiversity, provide a valuable source of natural products with a wide range of biological activities. Marine-derived antimicrobial compounds show significant potential against drug-resistant bacteria and fungi. This review discusses the current knowledge on marine natural products such as microorganisms, sponges, tunicates and mollusks with antibacterial and antifungal properties effective against drug-resistant microorganisms and their ecological roles. These natural products are classified based on their chemical structures, such as alkaloids, amino acids, peptides, polyketides, naphthoquinones, terpenoids, and polysaccharides. Although still in preclinical studies, these agents demonstrate promising in vivo efficacy, suggesting that marine sources could be pivotal in developing new drugs to combat AMR, thereby fulfilling an essential medical need. This review highlights the ongoing importance of marine biodiversity exploration for discovering potential antimicrobial agents.
Assuntos
Antibacterianos , Antifúngicos , Organismos Aquáticos , Produtos Biológicos , Animais , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Humanos , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacosRESUMO
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2'-dihydroxyflavone (3,2'-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2'-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2'-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2'-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections.
Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Fatores de Virulência , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Flavonas/farmacologia , Flavonoides/farmacologia , Virulência/efeitos dos fármacos , HumanosRESUMO
Skin microbiota, such as acne-related Cutibacterium acnes, Staphylococcus aureus, and fungal Candida albicans, can form polymicrobial biofilms with greater antimicrobial tolerance to traditional antimicrobial agents and host immune systems. In this study, the phytopigment shikonin was investigated against single-species and multispecies biofilms under aerobic and anaerobic conditions. Minimum inhibitory concentrations of shikonin were 10 µg/mL against C. acnes, S. aureus, and C. albicans, and at 1-5 µg/mL, shikonin efficiently inhibited single biofilm formation and multispecies biofilm development by these three microbes. Shikonin increased porphyrin production in C. acnes, inhibited cell aggregation and hyphal formation by C. albicans, decreased lipase production, and increased hydrophilicity in S. aureus. In addition, shikonin at 5 or 10 µg/mL repressed the transcription of various biofilm-related genes and virulence-related genes in C. acnes and downregulated the gene expression levels of the quorum-sensing agrA and RNAIII, α-hemolysin hla, and nuclease nuc1 in S. aureus, supporting biofilm inhibition. In addition, shikonin prevented multispecies biofilm development on porcine skin, and the antimicrobial efficacy of shikonin was recapitulated in a mouse infection model, in which it promoted skin regeneration. The study shows that shikonin inhibits multispecies biofilm development by acne-related skin microbes and might be useful for controlling bacterial infections.
Assuntos
Acne Vulgar , Anti-Infecciosos , Naftoquinonas , Infecções Estafilocócicas , Animais , Camundongos , Candida albicans/genética , Staphylococcus aureus , Biofilmes , Anti-Infecciosos/farmacologiaRESUMO
The release of industrial wastewater has adverse effects on both aquatic ecosystems and the environment. Discharging untreated organic dyes into aquatic environments significantly amplifies pollution levels in these ecosystems. Ensuring the appropriate disposal of organic colorants and their derivatives before introducing them into wastewater streams is essential to prevent environmental contamination. This study aimed to develop an eco-friendly and sustainable approach to synthesize a chitosan-functionalized silver (Ag) nanocomposite using Solanum trilobatum for color pollutant mitigation. The synthesized CS-Ag nanocomposite was analyzed using various techniques such as UV-visible, FTIR, TEM, and EDS. TEM analysis revealed that the CS-Ag nanocomposite had a spherical nanostructure, with diameters ranging from 17.4 to 43.9 nm. These nanocomposites were tested under visible light irradiation to analyze their photocatalytic character against Congo red (CR). The nanocomposite exhibited a remarkable dye removal efficiency of over 93.6% within 105 min under irradiation. In the experimental recycling study, the CS-Ag nanocomposites demonstrated remarkable stability and reusability. Furthermore, the CS-Ag nanocomposite exhibited promising inhibition activity against bacterial pathogens. Our research revealed that the synthesized nanocomposite has the potential to act as a highly effective photocatalyst and bactericidal agent in various industrial and clinical applications.
Assuntos
Antibacterianos , Quitosana , Corantes , Nanocompostos , Prata , Poluentes Químicos da Água , Quitosana/química , Nanocompostos/química , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Corantes/química , Poluentes Químicos da Água/química , Catálise , Vermelho Congo/química , Recuperação e Remediação Ambiental/métodos , Águas Residuárias/química , LuzRESUMO
The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240 nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPs have an agglomerated distribution and forming spherical structures with size ranging from 25-80 nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibition property.
Assuntos
Poluentes Ambientais , Águas Residuárias , Escherichia coli , Frutas , Staphylococcus aureus , Nanopartículas Magnéticas de Óxido de Ferro , Extratos VegetaisRESUMO
SrTiO3/Ag nanocomposites were synthesized using a facile wet impregnation method, employing rigorous experimental techniques for comprehensive characterization. XRD, FTIR, UV, PL, FESEM, and HRTEM were meticulously utilized to elucidate their structural, functional, morphological, and optical properties. The electrochemical performance of the SrTiO3/Ag nanocomposite was rigorously assessed, revealing an impressive specific capacitance of 850 F/g at a current density of 1 A. Furthermore, the photocatalytic activity of the SrTiO3/Ag nanocomposite was rigorously examined using methylene blue (MB) dye, and the results were outstanding. After 120 min of UV irradiation, the nanocomposite exhibited an exceptional MB dye degradation efficiency exceeding 88%. The SrTiO3/Ag nanocomposite represents an exemplary catalyst in terms of efficiency, cost-effectiveness, environmental compatibility, and reusability. The electron and superoxide radicals play a chief role in the MB dye degradation process. The inclusion of Ag within the SrTiO3 matrix facilitated the formation of a conductive nano-network, ultimately resulting in superior capacitive and photocatalytic performance.
Assuntos
Poluentes Ambientais , Nanopartículas , Prata , Condutividade Elétrica , Azul de MetilenoRESUMO
A simple sol-gel combustion process was employed for the creation of MFe2O4 (M=Ni, Co) nanoparticles. The synthesized nanoparticles, acting as both photocatalysts and gas sensors, were analyzed using various analytical techniques. MFe2O4 (M=Ni, Co) material improved the degradation of methylene blue (MB) under UV-light irradiation, serving as an enhanced electron transport medium. UV-vis studies demonstrated that NiFe2O4 achieved a 60% degradation, while CoFe2O4 nanostructure exhibited a 76% degradation efficacy in the MB dye removal process. Furthermore, MFe2O4 (M=Ni, Co) demonstrated chemosensitive-type sensor capabilities at ambient temperature. The sensor response and recovery times for CoFe2O4 at a concentration of 100 ppm were 15 and 20, respectively. Overall, the synthesis of MFe2O4 (M=Ni, Co) holds the potential to significantly improve the photocatalytic and gas sensing properties, particularly enhancing the performance of CoFe2O4. The observed enhancements make honey MFe2O4 (M=Ni, Co) a preferable choice for environmental remediation applications.
Assuntos
Cobalto , Compostos Férricos , Azul de Metileno , Níquel , Cobalto/química , Cobalto/análise , Níquel/química , Níquel/análise , Compostos Férricos/química , Azul de Metileno/química , Nanopartículas Metálicas/química , Gases , Catálise , Raios Ultravioleta , Recuperação e Remediação Ambiental/métodos , Nanopartículas/química , Óxido de Alumínio , Óxido de MagnésioRESUMO
The synthesis of polymer-encapsulated metal nanoparticles is a growing field of area due to their long-term uses in the development of new technologies. The present study describes the synthesis of chitosan/silver nanocomposite using kaempferol for anticancer and bactericidal activity. The formation of Kf-CS/Ag nanocomposite was confirmed by the development of a brown color and UV-absorbance around 438 nm. The IR study was utilized to determine the existence of Kf and CS in the synthesized nanocomposite. TEM analysis demonstrated that the synthesized nanocomposite have a predominantly uniform spherical shape and size ranges 7-10 nm. EDX spectrum showed the existence of Ag, C, and N elements in the nanocomposite material. Further, Kf-CS/Ag nanocomposite exhibited potential in vitro inhibitory property against triple-negative breast cancer (TNBC) cells and their IC50 values was found to be 53 µg/mL. Moreover, fluorescent assays such as DAPI and AO/EtBr confirmed the apoptosis induction ability of Kf-CS/Ag nanocomposite in MDA-MB-231 cells. The synthesized Kf-CS/Ag nanocomposite showed significant and dose-depended antibacterial property against S. aureus and P. aeruginosa. Thus, the obtained findings demonstrated that the synthesized nanocomposite can be potentially used to improve human health as biocidal nanocomposite in biomedical sectors.
Assuntos
Quitosana , Nanopartículas Metálicas , Nanocompostos , Neoplasias de Mama Triplo Negativas , Humanos , Staphylococcus aureus , Prata , Quempferóis , Antibacterianos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
In recent years, the biosynthesis of silver (Ag) nanoparticles has attracted a great deal of interest for applications in biomedicine and bioremediation. In the present study, Gracilaria veruccosa extract was used to synthesize Ag nanoparticles for investigating their antibacterial and antibiofilm potentials. The color shift from olive green to brown indicated the synthesis of AgNPs by plasma resonance at 411 nm. Physical and chemical characterization revealed that AgNPs of 20-25 nm sizes were synthesized. Detecting functional groups, such as carboxylic acids and alkenes, suggested that the bioactive molecules in the G. veruccosa extract assisted the synthesis of AgNPs. X-ray diffraction verified the s purity and crystallinity of the AgNPs with an average diameter of 25 nm, while DLS analysis showed a negative surface charge of -22.5 mV. Moreover, AgNPs were tested in vitro for antibacterial and antibiofilm efficacies against S. aureus. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus was 3.8 µg/mL. Light and fluorescence microscopy proved the potential of AgNPs to disrupt the mature biofilm of S. aureus. Therefore, the present report has deciphered the potential of G. veruccosafor the synthesis of AgNPs and targeted the pathogenic bacteria S. aureus.