Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13982, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886547

RESUMO

Colloidal quantum dots (QDs) are attracting research interest because of their unique optical properties that result from the quantum confinement effect. ZnSe QDs, which are II-VI semiconductors, offer a wide direct bandgap (2.7 eV), making them promising for applications such as light-emitting diodes, photodetectors, and biomedical labeling. In the present work, colloidal ZnSe (QDs) were synthesized by the hot-injection method with a Zn:Se ratio of 1:1. The optical properties of ZnSe QDs obtained at different reaction times were investigated by spectrophotometric UV-vis absorption and emission measurements. The as-synthesized ZnSe QDs exhibit blue excitonic emission, and no defect emission was detected. Transmission electron micrographs indicated that the QDs have a spherical morphology with dimensions ranging from 3.69 to 4.53 nm. In particular, the Brus model was applied to demonstrate a correlation between the QD sizes and the optical bandgaps obtained from Tauc plots.

2.
Adv Mater ; 36(31): e2401809, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717569

RESUMO

Realizing topological superconductivity by integrating high-transition-temperature (TC) superconductors with topological insulators can open new paths for quantum computing applications. Here, a new approach is reported for increasing the superconducting transition temperature ( T C onset ) $( {T_{\mathrm{C}}^{{\mathrm{onset}}}} )$ by interfacing the unconventional superconductor Fe(Te,Se) with the topological insulator Bi-Te system in the low-Se doping regime, near where superconductivity vanishes in the bulk. The critical finding is that the T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ of Fe(Te,Se) increases from nominally non-superconducting to as high as 12.5 K when Bi2Te3 is replaced with the topological phase Bi4Te3. Interfacing Fe(Te,Se) with Bi4Te3 is also found to be critical for stabilizing superconductivity in monolayer films where T C onset $T_{\mathrm{C}}^{{\mathrm{onset}}}$ can be as high as 6 K. Measurements of the electronic and crystalline structure of the Bi4Te3 layer reveal that a large electron transfer, epitaxial strain, and novel chemical reduction processes are critical factors for the enhancement of superconductivity. This novel route for enhancing TC in an important epitaxial system provides new insight on the nature of interfacial superconductivity and a platform to identify and utilize new electronic phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA