Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Chem Chem Phys ; 26(1): 76-84, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38013482

RESUMO

Lanthanide-incorporated crystals display the phenomenon of upconversion (UC), wherein near-infrared (NIR) light is converted into ultraviolet-visible (UV-Vis) emission with a narrow bandwidth. This unique photophysical property renders lanthanide UC materials highly promising for diverse applications. However, the limited quantum efficiency (∼3%) hinders the broader utilization of UC materials. Consequently, numerous studies have focused on overcoming this low efficiency. Notably, it has been observed that manipulation of the site symmetry in UC materials significantly enhances their UC efficiency. In this study, we investigate the UC enhancement of Er3+ incorporated BaTiO3 (E-BT) crystals through the introduction of oxygen vacancies (OV). The OV were created using a post-heat treatment method, and the annealing time was varied to control the quantity of OV. An optimal annealing time of 6 hours was determined for efficient OV generation, beyond which the OV content decreased. Remarkably, E-BT crystals with OV exhibited up to three-fold greater UC compared to those without OV. This outcome suggests that OV induce symmetry changes in the E-BT crystal structure. Furthermore, the degree of UC enhancement in E-BT was found to be proportional to the amount of OV present.

2.
Phys Chem Chem Phys ; 23(27): 14587-14591, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34179911

RESUMO

Lanthanide incorporated perovskite is one of the most promising systems for efficient energy conversion or light-emitting materials in terms of upconversion (UC). Investigation of the photophysical mechanism of UC in the lanthanide-doped system is here continued. However, research on the 4I13/2 energy state in Er3+ is rare and more is still needed. In our work, BaTiO3:Er3+ (E-BT) was irradiated by a 1532 nm laser which is a resonance to the energy between 4I13/2 and the ground 4I15/2 state in Er3+. Bright 1532 nm-pumped UC was generated, and the UC color changed from red to yellow under increasing laser power. In addition, pump-power-dependent UC contained interesting clues about the photophysical pathway of UC. By analyzing photon numbers for each UC (green: 2H11/2/4S3/2 → 4I15/2, red: 4F9/2 → 4I15/2, infrared: 4I9/2 → 4I15/2), we found that changes in photon number with pump-power increase contain three different phases (P). P1 is a red UC phase with a small cross-relaxation between Er3+ ions. However, in P2, there is a rapid decrease in the photon number with green UC generation, which is due to the enhancement of 4I13/2-populating cross-relaxation. Finally, in P3, a saturated 4I13/2 state causes little increase of photon number (compared with P2), with different mechanistic cross-relaxation enhancement. With these three different phases under 1532 nm pumping, photophysical mechanisms in E-BT are interpreted.

3.
J Chem Phys ; 154(5): 054701, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557550

RESUMO

Despite advances of lanthanide-doped upconversion (UC) materials, the applications such as light-emitting diode and biological imaging are limited by low quantum efficiency. For this context, the understanding of unique interactions between the doped-lanthanides and the host crystals has attracted a huge amount of the researcher's interest. In particular, it was revealed that doping lanthanide ions in a non-centrosymmetric site of host lattice is the cause of relaxation of the Laporte selection rule in the 4f-4f transition of lanthanide ions. One of the layered perovskites CsBiNb2O7 is known to have non-centrosymmetric sites, which would lead to highly bright UC emission. Nevertheless, to our knowledge, there has been no research on the UC comparison between host materials of CsBiNb2O7 with other hosts. In this article, we present the UC intensity comparison of Yb3+-Er3+ ion doped CsBiNb2O7, NaYF4, BaTiO3, and SrTiO3 hosts (the UC in CsBiNb2O7:Er3+,Yb3+ was 2.4 times that of NaYF4:Er3+,Yb3+ and ∼70 times that of SrTiO3:Er3+,Yb3+). After that, we dig into UC, downshifting, and double beam system UC properties. The activator concentration was optimized by varying the doping ratio of Yb3+ and Er3+, and we found out the main reason for the concentration quenching behavior in Er3+ ion doped CsBiNb2O7 is dipole-dipole interaction. In addition, the double excitation experiment indicates that the absorption (4I15/2 → 4I13/2) factor is stronger than the stimulated emission (4I13/2 → 4I15/2) factor in CsBiNb2O7 under 1540 nm laser irradiation.

4.
Biochem Biophys Res Commun ; 527(3): 778-784, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32444142

RESUMO

Pyruvate dehydrogenase kinase (PDK) controls the activity of pyruvate decarboxylase complex (PDC) by phosphorylating key serine residues on the E1 subunit, which leads to a decreased oxidative phosphorylation in mitochondria. Inhibition of PDK activity by natural/synthetic compounds has been shown to reverse the Warburg effect, a characteristic metabolism in cancer cells. PDK-PDC axis also has been associated with diabetes and heart disease. Therefore, regulation of PDK activity has been considered as a promising strategy to treat related diseases. Here we present the X-ray crystal structure of PDK2 complexed with a recently identified PDK4 inhibitor, compound 8c, which has been predicted to bind at the lipoyl-binding site and interrupt intermolecular interactions with the E2-E3bp subunits of PDC. The co-crystal structure confirmed the specific binding location of compound 8c and revealed the remote conformational change in the ATP-binding pocket. In addition, two novel 4,5-diarylisoxazole derivatives, GM10030 and GM67520, were synthesized and used for structural studies, which target the ATP-binding site of PDK2. These compounds bind to PDK2 with a sub-100nM affinity as determined by isothermal titration calorimetry experiments. Notably, the crystal structure of the PDK2-GM10030 complex displays unprecedented asymmetric conformation of human PDK2 dimer, especially in the ATP-lids and C-terminal tails.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
5.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901823

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) are inorganic nanomaterials in which the lanthanide cations embedded in the host matrix can convert incident near-infrared light to visible or ultraviolet light. These particles are often used for long-term and real-time imaging because they are extremely stable even when subjected to continuous irradiation for a long time. It is now possible to image their movement at the single particle level with a scale of a few nanometers and track their trajectories as a function of time with a scale of a few microseconds. Such UCNP-based single-particle tracking (SPT) technology provides information about the intracellular structures and dynamics in living cells. Thus far, most imaging techniques have been built on fluorescence microscopic techniques (epifluorescence, total internal reflection, etc.). However, two-dimensional (2D) images obtained using these techniques are limited in only being able to visualize those on the focal planes of the objective lens. On the contrary, if three-dimensional (3D) structures and dynamics are known, deeper insights into the biology of the thick cells and tissues can be obtained. In this review, we introduce the status of the fluorescence imaging techniques, discuss the mathematical description of SPT, and outline the past few studies using UCNPs as imaging probes or biologically functionalized carriers.


Assuntos
Rastreamento de Células , Nanopartículas/química , Nanopartículas/metabolismo , Transporte Biológico , Sistemas de Liberação de Medicamentos , Imunofluorescência , Imageamento Tridimensional , Microscopia de Fluorescência , Imagem Molecular , Nanotecnologia
6.
Phys Chem Chem Phys ; 20(16): 11359-11368, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29644351

RESUMO

Understanding the interaction of nanoparticles with living cells on the basis of cellular uptake efficiency is a fundamental requisite in biomedical research. Cellular internalization of nanoparticles takes place by mechanisms like ATP hydrolysis-driven endocytosis that deliver nanoparticles to the cytoplasm, organelles and nuclei. Despite its importance in nanomedicine, this uptake procedure is not understood in-depth because of the complexity of the biochemical mechanisms and the lack of available experimental methods for quantitative analysis. The only breakthrough is likely to be the development of imaging techniques that can visualize, monitor and even count the number of nanoparticles inside the cell. To this end, we report here a new, fast and background-free three-dimensional (3-D) imaging technique with quantitative evaluation of the uptake efficiency for NaYF4:Yb3+,Er3+/NaYF4 core/shell upconversion nanoparticles (UCNPs) functionalized with different chemical and biological groups. Furthermore, the multiple 3-D trajectories of the UCNPs have been analyzed to investigate the cellular dynamics. This study reveals the nuclear uptake of UCNPs to be dependent on the specific chemical groups conjugated to the UCNPs. The developed 3-D imaging technique is of great significance for exploring complex biological systems.


Assuntos
Imageamento Tridimensional/métodos , Nanopartículas/metabolismo , Érbio/química , Fluorescência , Fluoretos/química , Células HeLa , Humanos , Microscopia de Fluorescência , Nanopartículas/química , Itérbio/química , Ítrio/química
7.
Phys Chem Chem Phys ; 19(15): 9739-9744, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28367577

RESUMO

Upconversion nanoparticles (UCNPs) have attracted enormous interest over the past few years because of their unique optical properties and potential for use in various applications such as bioimaging probes, biosensors, and light-harvesting materials for photovoltaics. The improvement of imaging resolution is one of the most important goals for UCNPs used in biological applications. Super-resolution imaging techniques that overcome the fundamental diffraction limit of light rely on the photochemistry of organic dyes or fluorescent proteins. Here we report our progress toward super-resolution microscopy with UCNPs. We found that the red emission (655 nm) of core/shell UCNPs with the structure NaYF4:Yb3+,Er3+/NaYF4 could be modulated by emission depletion (ED) of the intermediate state that interacts resonantly with an infrared beam (1540 nm). In contrast, the green emission bands (525 and 545 nm) of the UCNPs were less affected by irradiation with the infrared beam. The origin of such distinct behaviors between the green and red emissions was attributed to their different photophysical pathways.

8.
Molecules ; 22(12)2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186844

RESUMO

Photon upconversion materials, featuring excellent photophysical properties, are promising for bio-medical research due to their low autofluorescence, non-cytotoxicity, low photobleaching and high photostability. Upconversion based pH-nanoprobes are attracting considerable interest due to their superiority over pH-sensitive molecular indicators and metal nanoparticles. Herein, we review the advances in upconversion based pH-nanoprobes, the first time in the seven years since their discovery in 2009. With a brief discussion on the upconversion materials and upconversion processes, the progress in this field has been overviewed, along with the toxicity and biodistribution of upconversion materials for intracellular application. We strongly believe that this survey will encourage the further pursuit of intense research for designing molecular pH-sensors.


Assuntos
Concentração de Íons de Hidrogênio , Luminescência , Medições Luminescentes , Nanopartículas Metálicas , Sondas Moleculares , Animais , Técnicas Biossensoriais , Humanos , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Sondas Moleculares/química
9.
Chem Soc Rev ; 44(6): 1302-17, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25042637

RESUMO

Lanthanide-doped upconverting nanoparticles (UCNPs) have recently attracted enormous attention in the field of biological imaging owing to their unique optical properties: (1) efficient upconversion photoluminescence, which is intense enough to be detected at the single-particle level with a (nonscanning) wide-field microscope setup equipped with a continuous wave (CW) near-infrared (NIR) laser (980 nm), and (2) resistance to photoblinking and photobleaching. Moreover, the use of NIR excitation minimizes adverse photoinduced effects such as cellular photodamage and the autofluorescence background. Finally, the cytotoxicity of UCNPs is much lower than that of other nanoparticle systems. All these advantages can be exploited simultaneously without any conflicts, which enables the establishment of a novel UCNP-based platform for wide-field two-photon microscopy. UCNPs are also useful for multimodal in vivo imaging because simple variations in the composition of the lattice atoms and dopant ions integrated into the particles can be easily implemented, yielding various distinct biomedical activities relevant to magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). These multiple functions embedded in a single type of UCNPs play a crucial role in precise disease diagnosis. The application of UCNPs is extended to therapeutic fields such as photodynamic and photothermal cancer therapies through advanced surface conjugation schemes.


Assuntos
Nanopartículas/química , Animais , Meios de Contraste/química , Humanos , Elementos da Série dos Lantanídeos/química , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Neoplasias/diagnóstico , Fótons , Tomografia por Emissão de Pósitrons , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Computadorizada por Raios X
10.
Phys Chem Chem Phys ; 17(20): 13201-5, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25929753

RESUMO

Lanthanide-doped upconverting nanoparticles (UCNPs, NaYF4:Yb(3+),Er(3+)) are well known for emitting visible photons upon absorption of two or more near-infrared (NIR) photons through energy transfer from the sensitizer (Yb(3+)) to the activator (Er(3+)). Of the visible emission bands (two green and one red band), it has been suggested that the red emission results from two competing upconversion pathways where the non-radiative relaxation occurs after the second energy transfer (pathway A, (4)I15/2 → (4)I11/2 → (4)F7/2 → (2)H11/2 → (4)S3/2 → (4)F9/2 → (4)I15/2) or between the first and the second energy transfer (pathway B, (4)I15/2 → (4)I11/2 → (4)I13/2 → (4)F9/2 → (4)I15/2). However, there has been no clear evidence or thorough analysis of the partitioning between the two pathways. We examined the spectra, power dependence, and time profiles of UCNP emission at either 980 nm or 488 nm excitation, to address which pathway is preferred. It turned out that the pathway B is predominant for the red emission over a wide range of excitation powers.

11.
Angew Chem Int Ed Engl ; 53(49): 13463-7, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25287642

RESUMO

A novel in situ co-assembled nanocomposite LSM-Bi1.6 Er0.4 O3 (ESB) (icn-LSMESB) was obtained by conjugated wet-chemical synthesis. It showed an enhancement of the cathode polarization at 600 °C by >140 times relative to conventional LSM-Y0.08 Zr0.84 O1.92 (YSZ) cathodes and exceptional solid oxide fuel cell (SOFC) performance of >2 W cm(-2) below 750 °C. This demonstrates that this novel cost-effective and broadly applicable process provides new opportunities for performance enhancement of energy storage and conversion devices by nanotailoring of composite electrodes.

12.
Nanomicro Lett ; 16(1): 93, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252345

RESUMO

The unique characteristics of nanofibers in rational electrode design enable effective utilization and maximizing material properties for achieving highly efficient and sustainable CO2 reduction reactions (CO2RRs) in solid oxide electrolysis cells (SOECs). However, practical application of nanofiber-based electrodes faces challenges in establishing sufficient interfacial contact and adhesion with the dense electrolyte. To tackle this challenge, a novel hybrid nanofiber electrode, La0.6Sr0.4Co0.15Fe0.8Pd0.05O3-δ (H-LSCFP), is developed by strategically incorporating low aspect ratio crushed LSCFP nanofibers into the excess porous interspace of a high aspect ratio LSCFP nanofiber framework synthesized via electrospinning technique. After consecutive treatment in 100% H2 and CO2 at 700 °C, LSCFP nanofibers form a perovskite phase with in situ exsolved Co metal nanocatalysts and a high concentration of oxygen species on the surface, enhancing CO2 adsorption. The SOEC with the H-LSCFP electrode yielded an outstanding current density of 2.2 A cm-2 in CO2 at 800 °C and 1.5 V, setting a new benchmark among reported nanofiber-based electrodes. Digital twinning of the H-LSCFP reveals improved contact adhesion and increased reaction sites for CO2RR. The present work demonstrates a highly catalytically active and robust nanofiber-based fuel electrode with a hybrid structure, paving the way for further advancements and nanofiber applications in CO2-SOECs.

13.
Adv Mater ; 36(5): e2306205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847822

RESUMO

Despite the great potential of solid oxide electrochemical cells (SOCs) as highly efficient energy conversion devices, the undesirable high operating temperature limits their wider applicability. Herein, a novel approach to developing high-performance low-temperature SOCs (LT-SOCs) is presented through the use of an Er, Y, and Zr triple-doped bismuth oxide (EYZB). This study demonstrates that EYZB exhibits > 147 times higher ionic conductivity of 0.44 S cm-1 at 600 °C compared to commercial Y-stabilized zirconia electrolyte with excellent stability over 1000 h. By rationally incorporating EYZB in composite electrodes and bilayer electrolytes, the zirconia-based electrolyte LT-SOC achieves the unprecedentedly high performance of 3.45 and 2.02 W cm-2 in the fuel cell mode and 2.08 and 0.95 A cm-2 in the electrolysis cell mode at 700 °C and 600 °C, respectively. Further, a distinctive microstructural feature of EYZB that largely extends triple phase boundary at the interface is revealed through digital twinning. This work provides insights for developing high-performance LT-SOCs.

14.
Adv Colloid Interface Sci ; 320: 103008, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37776736

RESUMO

Blood-brain barrier (BBB) serves as an essential interface between central nervous system (CNS) and its periphery, allowing selective permeation of ions, gaseous molecules, and other nutrients to maintain metabolic functions of brain. Concurrently, it restricts passage of unsolicited materials from bloodstream to CNS which could otherwise lead to neurotoxicity. Nevertheless, in the treatment of neurodegenerative diseases such as Parkinson's, Alzheimer's, diffuse intrinsic pontine glioma, and other brain cancers, drugs must reach CNS. Among various materials developed for this purpose, a few judiciously selected polymeric nanocarriers are reported to be highly prospective to facilitate BBB permeation. However, the challenge of transporting drug-loaded nanomaterials across this barrier remains formidable. Herein a concise analysis of recently employed strategies for designing polymeric nanocarriers to deliver therapeutics across BBB is presented. Impacts of 3Ss, namely, size, shape, and surface charge of polymeric nanocarriers on BBB permeation along with different ligands used for nanoparticle surface modification to achieve targeted delivery have been scrutinized. Finally, we elucidated future research directions in the context of designing smart polymeric nanocarriers for BBB permeation. This work aims to guide researchers engaged in polymeric nanocarrier design, helping them navigate where to begin, what challenges to address, and how to proceed effectively.


Assuntos
Barreira Hematoencefálica , Nanopartículas , Barreira Hematoencefálica/metabolismo , Estudos Prospectivos , Sistemas de Liberação de Medicamentos , Encéfalo/metabolismo , Transporte Biológico , Preparações Farmacêuticas
15.
J Mater Chem B ; 10(18): 3420-3433, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35389393

RESUMO

The delicate tertiary structure of proteins, their susceptibility to heat- and enzyme-induced irreversible denaturation, and their tendency to get accumulated at the cell membrane during uptake are daunting challenges in proteinaceous therapeutic delivery. Herein, a polyelectrolyte complex having encapsulated therapeutic protein has been designed on the surface of upconverting luminescent nanoparticles (NaYF4:20%Yb3+,2%Er3+). This nanosized complex system has been found to overcome the challenges of protein aggregation at the cell membrane. It has also defended the cargo from denaturation against (a) enzymatic action of proteinase K and (b) heat (up to 60 °C). Additionally, the nanoparticles at the core of the loaded carrier served as near-infrared (980 nm) responsive probe to accomplish extended-duration 3D imaging during protein delivery. The outer layer of polymer played pivotal role to protect/retrieve the protein structure from denaturation as investigated by circular dichroism studies. Both the masked surface-charges of protein and the nanoscale size of the loaded carrier have facilitated their efficient passage through the cell membrane as observed through 3D images/videos. This nanocarrier is the first of its kind for direct delivery of protein. Thus, the findings can be useful to protect and transport various proteinaceous materials to overcome challenges of accumulation at the cell-membrane and low-temperature storage, as nature does.


Assuntos
Nanopartículas , Concentração de Íons de Hidrogênio , Luminescência , Nanopartículas/química , Polieletrólitos , Polímeros
16.
Nanoscale ; 14(39): 14809, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36196671

RESUMO

Correction for 'Visualization of intercellular cargo transfer using upconverting nanoparticles' by Yeongchang Goh et al., Nanoscale, 2022, https://doi.org/10.1039/d2nr01999j.

17.
Adv Sci (Weinh) ; 9(3): e2103561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821483

RESUMO

3D printing of fiber-reinforced composites is expected to be the forefront technology for the next-generation high-strength, high-toughness, and lightweight structural materials. The intrinsic architecture of 3D-printed composites closely represents biomimetic micro/macrofibril-like hierarchical structure composed of intermediate filament assembly among the micron-sized reinforcing fibers, and thus contributes to a novel mechanism to simultaneously improve mechanical properties and structural features. Notably, it is found that an interfacial heterogeneity between numerous inner interfaces in the hierarchical structure enables an exceptional increase in the toughness of composites. The strong interfacial adhesion between the fibers and matrix, with accompanying the inherently weak interfacial adhesion between intermediate filaments and the resultant interfacial voids, provide a close representation of the toughness behavior of natural architectures relying on the localized heterogeneity. Given the critical embedment length of fiber reinforcement, extraordinary improvement has been attained not only in the strength but also in toughness taking advantage of the synergy effect from the aforementioned nature-inspired features. Indeed, the addition of a small amount of short fiber to the brittle bio-filaments results in a noticeable increase of more than 200% in the tensile strength and modulus with further elongation increment. This article highlights the inherent structural hierarchy of 3D-printed composites and the relevant sophisticated mechanism for anomalous mechanical reinforcement.


Assuntos
Biomimética/métodos , Teste de Materiais/métodos , Impressão Tridimensional , Estresse Mecânico , Resistência à Tração , Propriedades de Superfície
18.
Nanoscale ; 14(38): 14008-14013, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36053238

RESUMO

Cell-cell communication is important for cellular differentiation, organ function, and immune responses. In intercellular communication, the extracellular vesicles (EVs) play a significant role in delivering the cargo molecules such as genes, proteins, and enzymes, to regulate and control the ability of the recipient cells. In this study, the observation of intercellular cargo transfer via dual-colour imaging using upconverting nanoparticles (UCNPs) has been demonstrated. Using this technique, the intercellular transport via contact-dependent and contact-independent signaling in live HeLa cells was clearly visualized with real-time, long-term single-vesicle tracking. Furthermore, it was demonstrated that the endocytosed UCNPs can be transmitted with the encapsulation of EVs labelled with fluorescent proteins.


Assuntos
Vesículas Extracelulares , Nanopartículas , Comunicação Celular , Endocitose , Vesículas Extracelulares/metabolismo , Células HeLa , Humanos , Proteínas/metabolismo
19.
Proc Natl Acad Sci U S A ; 105(18): 6602-7, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18448679

RESUMO

The evolution of RNA conformation with Mg(2+) concentration ([Mg(2+)]) is typically determined from equilibrium titration measurements or nonequilibrium single [Mg(2+)]-jump measurements. We study the folding of single RNA molecules in response to a series of periodic [Mg(2+)] jumps. The 260-residue catalytic domain of RNase P RNA from Bacillus stearothermophilus is immobilized in a microfluidic flow chamber, and the RNA conformational changes are probed by fluorescence resonance energy transfer (FRET). The kinetics of population redistribution after a [Mg(2+)] jump and the observed connectivity of FRET states reveal details of the folding pathway that complement and transcend information from equilibrium or single-jump measurements. FRET trajectories for jumps from [Mg(2+)] = 0.01 to 0.1 mM exhibit two-state behavior whereas jumps from 0.01 mM to 0.4 mM exhibit two-state unfolding but multistate folding behavior. RNA molecules in the low and high FRET states before the [Mg(2+)] increase are observed to undergo dynamics in two distinct regions of the free energy landscape separated by a high barrier. We describe the RNA structural changes involved in crossing this barrier as a "hidden" degree of freedom because the changes do not alter the detected FRET value but do alter the observed dynamics. The associated memory prevents the populations from achieving their equilibrium values at the end of the 5- to 10-sec [Mg(2+)] interval, thereby creating a nonequilibrium steady-state condition. The capability of interrogating nonequilibrium steady-state RNA conformations and the adjustable period of [Mg(2+)]-jump cycles makes it possible to probe regions of the free energy landscape that are infrequently sampled in equilibrium or single-jump measurements.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Geobacillus stearothermophilus/genética , Cinética , Magnésio/química , Termodinâmica
20.
Pharmaceutics ; 13(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466898

RESUMO

Tauopathy is the aggregation phenomenon of tau proteins and associated with neurodegenerative diseases. It metastasizes via the transfer of tau aggregates to adjacent neuron cells; however, the mechanism has not yet been fully understood. Moreover, if the materials used for designing drug delivery system to treat such neurodegenerative diseases do not undergo biodegradation or exocytosis but remains in cells or tissues, they raise concerns about their possible negative impacts. In this study, the uptake and delivery mechanisms of nano-sized carriers in tau aggregated neuron cells were investigated employing polyelectrolyte-functionalized upconversion nanoparticles (UCNPs) of diameter ~100 nm. Investigation through bioimaging was carried out by irradiating the particles with near-infrared light. Here, forskolin and okadaic acid were employed to induce tau aggregation into healthy neuron cells. It was noticed that the tau-aggregated neuron cells, when treated with relatively large sized UCNPs, showed uptake efficiency similar to that of normal neuron cells however their intracellular transport and exocytosis were impacted, and most of the carriers remained accumulated around lysosome. This demonstrates that metastasis mechanisms of tauopathy can get influenced by the size of carriers and are to be considered during their pharmacokinetic studies which is often not addressed in many drug delivery studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA