Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nanotechnology ; 28(18): 185603, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28393764

RESUMO

We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.

2.
J Am Chem Soc ; 138(3): 876-83, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26713516

RESUMO

We developed a new chemical strategy to enhance the stability of lead selenide nanocrystals (PbSe NCs) against oxidation through the surface passivation by P-O- moieties. In the synthesis of PbSe NCs, tris(diethylamino)phosphine (TDP) selenide (Se) was used as a Se precursor, and the resulting PbSe NCs withstood long-term air exposure while showing nearly no sign of oxidation. Nuclear magnetic resonance (NMR) spectroscopy reveals that TDP derivatives passivate the surface of PbSe NC. Through a series of ligand cleavage reactions, we found that the TDP derivatives are bound on NC surface through the P-O- moiety. Based on such understanding, it turned out that direct addition of various PAs during the synthesis of PbSe NCs also results in the NCs whose absorption spectrum remains nearly intact after air exposure for weeks. The P-O- moieties render the NCs stable in the operation of field effect transistors, suggesting that our findings can enable the use of air stable PbSe NCs in wider array of optoelectronic applications.

3.
Nanoscale ; 8(19): 10043-8, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27137458

RESUMO

We report the photocatalytic conversion of CO2 to CH4 using CuPt alloy nanoclusters anchored on TiO2. As the size of CuPt alloy nanoclusters decreases, the photocatalytic activity improves significantly. Small CuPt nanoclusters strongly bind CO2 intermediates and have a stronger interaction with the TiO2 support, which also contributes to an increased CH4 generation rate. The alloying and size effects prove to be the key to efficient CO2 reduction, highlighting a strategic platform for the design of photocatalysts for CO2 conversion.

4.
Chem Commun (Camb) ; 50(14): 1719-21, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24395043

RESUMO

We report ripening of metal particles anchored on pyramid-shaped heterostructure nanocrystals. The 'intra-particle' ripening results in a large metal tip at one corner with the other three tips vanishing. Investigation reveals that the ripening and core/shell formation affects photocatalytic activities via the Fermi level change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA