Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mater Horiz ; 10(9): 3382-3392, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37439537

RESUMO

Resistive random-access memory (RRAM) devices have significant advantages for neuromorphic computing but have fatal problems of uncontrollability and abrupt resistive switching behaviors degrading their synaptic performance. In this paper, we propose the electrochemical design of an active Cu2O layer containing a strategic sublayer of ultrafine Cu nanoparticles (U-Cu NPs) to form uniformly dispersed conducting filaments, which can effectively improve the reliability for analog switching of RRAM-based neuromorphic computing. The electrochemical pulse deposited (EPD) U-Cu NPs are linked to the bottom electrode through a semi-conductive path within the bottom Cu2O layer, since the EPD is preferentially carried out on the conductive sites. All Cu2O films with U-Cu NPs are developed in situ in the single electrolyte bath without any pause. The proposed U-Cu NPs can concentrate the external electric field and can generate conductive filament paths for analog resistive switching. The applied electric field was uniformly spread to U-Cu NPs at the center of the active layer and displays resistive switching behavior via multiple conductive filaments. This shows a strong harmony between the resistance-switching characteristics and the analog operation of the active layer. This RRAM device shows outstanding gradual analog switching, great linearity, dynamic range, endurance, precision, speed, and retention characteristics simultaneously and adequately for neuromorphic computing by realizing multiple weak filament-type operation.

2.
Micromachines (Basel) ; 13(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35457831

RESUMO

To utilize continuous ultralow intensity signals from oxide synaptic transistors as artificial synapses that mimic human visual perception, we propose strategic oxide channels that optimally utilize their advantageous functions by stacking two oxide semiconductors with different conductivities. The bottom amorphous indium-gallium-zinc oxide (a-IGZO) layer with a relatively low conductivity was designed for an extremely low initial postsynaptic current (PSCi) by achieving full depletion at a low negative gate voltage, and the stacked top amorphous indium-zinc oxide (a-IZO) layer improved the amplitude of the synaptic current and memory retention owing to the enhancement in the persistent photoconductivity characteristics. We demonstrated an excellent photonic synapse thin-film transistor (TFT) with a precise synaptic weight change even in the range of ultralow light intensity by adapting this stacking IGZO/IZO channel. The proposed device exhibited distinct ∆PSC values of 3.1 and 18.1 nA under ultralow ultraviolet light (350 nm, 50 ms) of 1.6 and 8.0 µW/cm2. In addition, while the lowest light input exhibited short-term plasticity characteristics similar to the "volatile-like" behavior of the human brain with a current recovery close to the initial value, the increase in light intensity caused long-term plasticity characteristics, thus achieving synaptic memory transition in the IGZO/IZO TFTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA