Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792895

RESUMO

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Reparo de DNA por Recombinação , Motivos de Aminoácidos , DNA/biossíntese , DNA Polimerase III/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/fisiologia , Raios Ultravioleta
2.
Mol Pharmacol ; 89(1): 53-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26494862

RESUMO

5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remains unclear how either genomically incorporated U or 5-FU contributes to killing. We show that depletion of the uracil DNA glycosylase (UNG) sensitizes tumor cells to FdUrd. Furthermore, we show that UNG depletion does not sensitize cells to the thymidylate synthase inhibitor (raltitrexed), which induces uracil but not 5-FU accumulation, thus indicating that genomically incorporated 5-FU plays a major role in the antineoplastic effects of FdUrd. We also show that 5-FU metabolites do not block the first round of DNA synthesis but instead arrest cells at the G1/S border when cells again attempt replication and activate homologous recombination (HR). This arrest is not due to 5-FU lesions blocking DNA polymerase δ but instead depends, in part, on the thymine DNA glycosylase. Consistent with the activation of HR repair, disruption of HR sensitized cells to FdUrd, especially when UNG was disabled. These results show that 5-FU lesions that escape UNG repair activate HR, which promotes cell survival.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Fluoruracila/metabolismo , Recombinação Homóloga/fisiologia , Uracila-DNA Glicosidase/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Fluoruracila/farmacologia , Células HT29 , Recombinação Homóloga/efeitos dos fármacos , Humanos , Uracila-DNA Glicosidase/genética
3.
Nucleic Acids Res ; 41(22): 10323-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038470

RESUMO

Previous evidence indicates that telomeres resemble common fragile sites and present a challenge for DNA replication. The precise impediments to replication fork progression at telomeric TTAGGG repeats are unknown, but are proposed to include G-quadruplexes (G4) on the G-rich strand. Here we examined DNA synthesis and progression by the replicative DNA polymerase δ/proliferating cell nuclear antigen/replication factor C complex on telomeric templates that mimic the leading C-rich and lagging G-rich strands. Increased polymerase stalling occurred on the G-rich template, compared with the C-rich and nontelomeric templates. Suppression of G4 formation by substituting Li(+) for K(+) as the cation, or by using templates with 7-deaza-G residues, did not alleviate Pol δ pause sites within the G residues. Furthermore, we provide evidence that G4 folding is less stable on single-stranded circular TTAGGG templates where ends are constrained, compared with linear oligonucleotides. Artificially stabilizing G4 structures on the circular templates with the G4 ligand BRACO-19 inhibited Pol δ progression into the G-rich repeats. Similar results were obtained for yeast and human Pol δ complexes. Our data indicate that G4 formation is not required for polymerase stalling on telomeric lagging strands and suggest that an alternative mechanism, in addition to stable G4s, contributes to replication stalling at telomeres.


Assuntos
DNA Polimerase III/metabolismo , DNA/biossíntese , Quadruplex G , Telômero/metabolismo , DNA/química , Humanos , Sequências Repetitivas de Ácido Nucleico , Moldes Genéticos
4.
J Biol Chem ; 288(5): 2941-50, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23233665

RESUMO

DNA polymerase δ consists of four subunits, one of which, p12, is degraded in response to DNA damage through the ubiquitin-proteasome pathway. However, the identities of the ubiquitin ligase(s) that are responsible for the proximal biochemical events in triggering proteasomal degradation of p12 are unknown. We employed a classical approach to identifying a ubiquitin ligase that is involved in p12 degradation. Using UbcH5c as ubiquitin-conjugating enzyme, a ubiquitin ligase activity that polyubiquitinates p12 was purified from HeLa cells. Proteomic analysis revealed that RNF8, a RING finger ubiquitin ligase that plays an important role in the DNA damage response, was the only ubiquitin ligase present in the purified preparation. In vivo, DNA damage-induced p12 degradation was significantly reduced by shRNA knockdown of RNF8 in cultured human cells and in RNF8(-/-) mouse epithelial cells. These studies provide the first identification of a ubiquitin ligase activity that is involved in the DNA damage-induced destruction of p12. The identification of RNF8 allows new insights into the integration of the control of p12 degradation by different DNA damage signaling pathways.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação a DNA/isolamento & purificação , Meia-Vida , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Poliubiquitina/metabolismo , Transporte Proteico/efeitos da radiação , Proteólise/efeitos da radiação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/isolamento & purificação , Ubiquitinação/efeitos da radiação , Raios Ultravioleta
5.
J Biol Chem ; 288(41): 29550-61, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23913683

RESUMO

DNA polymerase δ (Pol δ4) is a heterotetrameric enzyme, whose p12 subunit is degraded in response to DNA damage, leaving behind a trimer (Pol δ3) with altered enzymatic characteristics that participate in gap filling during DNA repair. We demonstrate that CRL4(Cdt2), a key regulator of cell cycle progression that targets replication licensing factors, also targets the p12 subunit of Pol δ4 in response to DNA damage and on entry into S phase. Evidence for the involvement of CRL4(Cdt2) included demonstration that p12 possesses a proliferating cell nuclear antigen-interacting protein-degron (PIP-degron) and that knockdown of the components of the CRL4(Cdt2) complex inhibited the degradation of p12 in response to DNA damage. Analysis of p12 levels in synchronized cell populations showed that p12 is partially degraded in S phase and that this is affected by knockdowns of CUL4A or CUL4B. Laser scanning cytometry of overexpressed wild type p12 and a mutant resistant to degradation showed that the reduction in p12 levels during S phase was prevented by mutation of p12. Thus, CRL4(Cdt2) also regulates the subunit composition of Pol δ during the cell cycle. These studies reveal a novel function of CRL4(Cdt2), i.e. the direct regulation of DNA polymerase δ, adding to its known functions in the regulation of the licensing of replication origins and expanding the scope of its overall control of DNA replication. The formation of Pol δ3 in S phase as a normal aspect of cell cycle progression leads to the novel implications that it is involved in DNA replication as well as DNA repair.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Linhagem Celular Tumoral , Proteínas Culina/genética , Proteínas Culina/metabolismo , DNA Polimerase III/química , DNA Polimerase III/genética , Células HEK293 , Células HeLa , Humanos , Citometria de Varredura a Laser , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
6.
Nucleic Acids Res ; 40(4): 1636-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22021378

RESUMO

Microsatellite DNA synthesis represents a significant component of human genome replication that must occur faithfully. However, yeast replicative DNA polymerases do not possess high fidelity for microsatellite synthesis. We hypothesized that the structural features of Y-family polymerases that facilitate accurate translesion synthesis may promote accurate microsatellite synthesis. We compared human polymerases κ (Pol κ) and η (Pol η) fidelities to that of replicative human polymerase δ holoenzyme (Pol δ4), using the in vitro HSV-tk assay. Relative polymerase accuracy for insertion/deletion (indel) errors within 2-3 unit repeats internal to the HSV-tk gene concurred with the literature: Pol δ4 >> Pol κ or Pol η. In contrast, relative polymerase accuracy for unit-based indel errors within [GT](10) and [TC](11) microsatellites was: Pol κ ≥ Pol δ4 > Pol η. The magnitude of difference was greatest between Pols κ and δ4 with the [GT] template. Biochemically, Pol κ displayed less synthesis termination within the [GT] allele than did Pol δ4. In dual polymerase reactions, Pol κ competed with either a stalled or moving Pol δ4, thereby reducing termination. Our results challenge the ideology that pol κ is error prone, and suggest that DNA polymerases with complementary biochemical properties can function cooperatively at repetitive sequences.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade de Microssatélites , Repetições de Microssatélites , Alelos , DNA/biossíntese , Dano ao DNA , DNA Polimerase III/metabolismo , Humanos , Mutação INDEL
7.
Genes (Basel) ; 14(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37107651

RESUMO

Mutations of numerous genes involved in DNA replication, DNA repair, and DNA damage response (DDR) pathways lead to a variety of human diseases, including aging and cancer [...].


Assuntos
Dano ao DNA , Neoplasias , Humanos , Dano ao DNA/genética , Reparo do DNA/genética , Mutação , Neoplasias/genética , Replicação do DNA/genética
8.
DNA Repair (Amst) ; 128: 103513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37285751

RESUMO

The extension of the invading strand within a displacement loop (D-loop) is a key step in homology directed repair (HDR) of doubled stranded DNA breaks. The primary goal of these studies was to test the hypotheses that 1) D-loop extension by human DNA polymerase δ4 (Pol δ4) is facilitated by DHX9, a 3' to 5' motor helicase, which acts to unwind the leading edge of the D-loop, and 2) the recruitment of DHX9 is mediated by direct protein-protein interactions between DHX9 and Pol δ4 and/or PCNA. DNA synthesis by Pol δ4 was analyzed in a reconstitution assay by the extension of a 93mer oligonucleotide inserted into a plasmid to form a D-loop. Product formation by Pol δ4 was monitored by incorporation of [α-32P]dNTPs into the 93mer primer followed by denaturing gel electrophoresis. The results showed that DHX9 strongly stimulated Pol δ4 mediated D-loop extension. Direct interactions of DHX9 with PCNA, the p125 and the p12 subunits of Pol δ4 were demonstrated by pull-down assays with purified proteins. These data support the hypothesis that DHX9 helicase is recruited by Pol δ4/PCNA to facilitate D-loop synthesis in HDR, and is a participant in cellular HDR. The involvement of DHX9 in HDR represents an important addition to its multiple cellular roles. Such helicase-polymerase interactions may represent an important aspect of the mechanisms involved in D-loop primer extension synthesis in HDR.


Assuntos
DNA Polimerase III , DNA Polimerase Dirigida por DNA , Humanos , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , DNA Polimerase III/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Neoplasias/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
9.
Biochemistry ; 51(1): 416-24, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22148433

RESUMO

DNA polymerase delta (Pol δ) is a central enzyme for eukaryotic DNA replication and repair. Pol δ is a complex of four subunits p125, p68, p50, and p12. The functional properties of Pol δ are largely determined by its interaction with its DNA sliding clamp PCNA (proliferating cellular nuclear antigen). The regulatory mechanisms that govern the association of Pol δ with PCNA are largely unknown. In this study, we identified S458, located in the PCNA-interacting protein (PIP-Box) motif of p68, as a phosphorylation site for PKA. Phosphomimetic mutation of S458 resulted in a decrease in p68 affinity for PCNA as well as the processivity of Pol δ. Our results suggest a role of phosphorylation of the PIP-motif of p68 as a molecular switch that dynamically regulates the functional properties of Pol δ.


Assuntos
DNA Polimerase III/química , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Ácido Aspártico/genética , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , DNA Polimerase III/antagonistas & inibidores , DNA Polimerase III/genética , Regulação para Baixo/genética , Células HeLa , Humanos , Mimetismo Molecular/genética , Dados de Sequência Molecular , Mutação , Fosforilação/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Serina/genética
10.
EMBO J ; 27(1): 155-67, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18079701

RESUMO

To address the biochemical mechanisms underlying the coordination between the various proteins required for nucleotide excision repair (NER), we employed the immobilized template system. Using either wild-type or mutated recombinant proteins, we identified the factors involved in the NER process and showed the sequential comings and goings of these factors to the immobilized damaged DNA. Firstly, we found that PCNA and RF-C arrival requires XPF 5' incision. Moreover, the positioning of RF-C is facilitated by RPA and induces XPF release. Concomitantly, XPG leads to PCNA recruitment and stabilization. Our data strongly suggest that this interaction with XPG protects PCNA and Pol delta from the effect of inhibitors such as p21. XPG and RPA are released as soon as Pol delta is recruited by the RF-C/PCNA complex. Finally, a ligation system composed of FEN1 and Ligase I can be recruited to fully restore the DNA. In addition, using XP or trichothiodystrophy patient-derived cell extracts, we were able to diagnose the biochemical defect that may prove to be important for therapeutic purposes.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Dano ao DNA/fisiologia , DNA Polimerase III/antagonistas & inibidores , DNA Polimerase III/metabolismo , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Raios Ultravioleta
11.
Nucleic Acids Res ; 38(4): 1149-62, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969545

RESUMO

Common fragile sites (CFS) are chromosomal regions that exhibit instability during DNA replication stress. Although the mechanism of CFS expression has not been fully elucidated, one known feature is a severely delayed S-phase. We used an in vitro primer extension assay to examine the progression of DNA synthesis through various sequences within FRA16D by the replicative human DNA polymerases delta and alpha, and with human cell-free extracts. We found that specific cis-acting sequence elements perturb DNA elongation, causing inconsistent DNA synthesis rates between regions on the same strand and complementary strands. Pol delta was significantly inhibited in regions containing hairpins and microsatellites, [AT/TA](24) and [A/T](19-28), compared with a control region with minimal secondary structure. Pol delta processivity was enhanced by full length Werner Syndrome protein (WRN) and by WRN fragments containing either the helicase domain or DNA-binding C-terminal domain. In cell-free extracts, stalling was eliminated at smaller hairpins, but persisted in larger hairpins and microsatellites. Our data support a model whereby CFS expression during cellular stress is due to a combination of factors--density of specific DNA secondary-structures within a genomic region and asymmetric rates of strand synthesis.


Assuntos
Sítios Frágeis do Cromossomo , DNA Polimerase III/metabolismo , Replicação do DNA , RecQ Helicases/metabolismo , Sequência de Bases , DNA/biossíntese , DNA/química , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos
12.
Animal Model Exp Med ; 5(5): 461-469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36168146

RESUMO

BACKGROUND: Replication stress response is crucial for the maintenance of a stable genome. POLDIP3 (DNA polymerase delta interacting protein 3) was initially identified as one of the DNA polymerase δ (Pol δ) interacting proteins almost 20 years ago. Using a variety of in vitro biochemical assays, we previously established that POLDIP3 is a key regulator of the enzymatic activity of Pol δ. However, the in vivo function of POLDIP3 in DNA replication and DNA damage response has been elusive. METHODS: We first generated POLDIP3 knockout (KO) cells using the CRISPR/Cas9 technology. We then investigated its biological functions in vivo using a variety of biochemical and cell biology assays. RESULTS: We showed that although the POLDIP3-KO cells manifest no pronounced defect in global DNA synthesis under nonstress conditions, they are sensitive to a variety of replication fork blockers. Intriguingly, we found that POLDIP3 plays a crucial role in the activation and maintenance of the DNA damage checkpoint in response to exogenous as well as endogenous replication stress. CONCLUSION: Our results indicate that when the DNA replication fork is blocked, POLDIP3 can be recruited to the stalled replication fork and functions to bridge the early DNA damage checkpoint response and the later replication fork repair/restart.


Assuntos
DNA Polimerase III , Replicação do DNA , DNA Polimerase III/metabolismo , Dano ao DNA
13.
Genes (Basel) ; 13(11)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36360158

RESUMO

POLDIP3 was initially identified as a DNA polymerase delta (Pol δ) interacting protein almost twenty years ago. Intriguingly, it also interacts with proteins involved in a variety of RNA related biological processes, such as transcription, pre-mRNA splicing, mRNA export, and translation. Studies in recent years revealed that POLDIP3 also plays critical roles in disassembling genome wide R-loop formation and activating the DNA damage checkpoint in vivo. Here, we review the functions of POLDIP3 in various RNA and DNA related cellular processes. We then propose a unified model to illustrate how POLDIP3 plays such a versatile role at the crossroad of the RNA and DNA metabolism.


Assuntos
DNA Polimerase III , RNA , RNA/genética , DNA Polimerase III/metabolismo , DNA/metabolismo , Transporte de RNA
14.
Nucleic Acids Res ; 37(2): 647-57, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19074196

RESUMO

Human DNA polymerase delta (Pol delta4), a key enzyme in chromosomal replication, is a heterotetramer composed of the p125, p50, p68 and p12 subunits. Genotoxic agents such as UV and alkylating chemicals trigger a DNA damage response in which Pol delta4 is converted to a trimer (Pol delta3) by degradation of p12. We show that Pol delta3 has altered enzymatic properties: it is less able to perform translesion synthesis on templates containing base lesions (O(6)-MeG, 8-oxoG, an abasic site or a thymine-thymine dimer); a greater proofreading activity; an increased exonuclease/polymerase activity ratio; a decreased tendency for the insertion of wrong nucleotides, and for the extension of mismatched primers. Overall, our findings indicate that Pol delta3 exhibits an enhanced ability for the detection of errors in both primers and templates over its parent enzyme. These alterations in Pol delta3 show that p12 plays a major role in Pol delta4 catalytic functions, and provides significant insights into the rationale for the conversion of Pol delta4 to Pol delta3 in the cellular response to DNA damage.


Assuntos
Pareamento Incorreto de Bases , Dano ao DNA , DNA Polimerase III/metabolismo , DNA/biossíntese , DNA Polimerase III/genética , Primers do DNA , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Mutação , Nucleotídeos/metabolismo , Subunidades Proteicas/metabolismo , Dímeros de Pirimidina/química , Proteínas Recombinantes/metabolismo , Moldes Genéticos , Raios Ultravioleta
15.
Biochemistry ; 49(17): 3545-54, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20334433

RESUMO

This study examines the role of the p12 subunit in the function of the human DNA polymerase delta (Pol delta) holoenzyme by comparing the kinetics of DNA synthesis and degradation catalyzed by the four-subunit complex, the three-subunit complex lacking p12, and site-directed mutants of each lacking proofreading exonuclease activity. Results show that p12 modulates the rate and fidelity of DNA synthesis by Pol delta. All four complexes synthesize DNA in a rapid burst phase and a slower, more linear phase. In the presence of p12, the burst rates of DNA synthesis are approximately 5 times faster, while the affinity of the enzyme for its DNA and dNTP substrates appears unchanged. The p12 subunit alters Pol delta fidelity by modulating the proofreading 3' to 5' exonuclease activity. In the absence of p12, Pol delta is more likely to proofread DNA synthesis because it cleaves single-stranded DNA twice as fast and transfers mismatched DNA from the polymerase to the exonuclease sites 9 times faster. Pol delta also extends mismatched primers 3 times more slowly in the absence of p12. Taken together, the changes that p12 exerts on Pol delta are ones that can modulate its fidelity of DNA synthesis. The loss of p12, which occurs in cells upon exposure to DNA-damaging agents, converts Pol delta to a form that has an increased capacity for proofreading.


Assuntos
DNA Polimerase III/química , DNA Polimerase III/metabolismo , DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Replicação do DNA , Exonucleases/metabolismo , Humanos , Proteínas Nucleares/metabolismo
16.
Nat Genet ; 52(2): 146-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32060489

RESUMO

In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSß. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Naftiridinas/farmacologia , Quinolonas/farmacologia , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Instabilidade de Microssatélites , Mutação , Ribonucleases/metabolismo , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica
17.
DNA Repair (Amst) ; 73: 64-70, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470508

RESUMO

Human DNA polymerase δ is normally present in unstressed, non-dividing cells as a heterotetramer (Pol δ4). Its smallest subunit, p12, is transiently degraded in response to UV damage, as well as during the entry into S-phase, resulting in the conversion of Pol δ4 to a trimer (Pol δ3). In order to further understand the specific cellular roles of these two forms of Pol δ, the gene (POLD4) encoding p12 was disrupted by CRISPR/Cas9 to produce p12 knockout (p12KO) cells. Thus, Pol δ4 is absent in p12KO cells, leaving Pol δ3 as the sole source of Pol δ activity. GFP reporter assays revealed that the p12KO cells exhibited a defect in homologous recombination (HR) repair, indicating that Pol δ4, but not Pol δ3, is required for HR. Expression of Flag-tagged p12 in p12KO cells to restore Pol δ4 alleviated the HR defect. These results establish a specific requirement for Pol δ4 in HR repair. This leads to the prediction that p12KO cells should be more sensitive to chemotherapeutic agents, and should exhibit synthetic lethal killing by PARP inhibitors. These predictions were confirmed by clonogenic cell survival assays of p12KO cells treated with cisplatin and mitomycin C, and with the PARP inhibitors Olaparib, Talazoparib, Rucaparib, and Niraparib. The sensitivity to PARP inhibitors in H1299-p12KO cells was alleviated by expression of Flag-p12. These findings have clinical significance, as the expression levels of p12 could be a predictive biomarker of tumor response to PARP inhibitors. In addition, small cell lung cancers (SCLC) are known to exhibit a defect in p12 expression. Analysis of several SCLC cell lines showed that they exhibit hypersensitivity to PARP inhibitors, providing evidence that loss of p12 expression could represent a novel molecular basis for HR deficiency.


Assuntos
DNA Polimerase III/antagonistas & inibidores , DNA Polimerase III/genética , Técnicas de Inativação de Genes , Recombinação Homóloga/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Polimerase III/deficiência , Células HeLa , Recombinação Homóloga/efeitos dos fármacos , Humanos , Mitomicina/farmacologia
18.
Cancer Biol Ther ; 20(4): 474-486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30427259

RESUMO

Chromosomal duplication is targeted by various chemotherapeutic agents for the treatment of cancer. However, there is no specific inhibitor of DNA polymerases that is viable for cancer management. Through structure-based in silico screening of the ZINC database, we identified a specific inhibitor of DNA polymerase δ. The discovered inhibitor, Zelpolib, is projected to bind to the active site of Pol δ when it is actively engaged in DNA replication through interactions with DNA template and primer. Zelpolib shows robust inhibition of Pol δ activity in reconstituted DNA replication assays. Under cellular conditions, Zelpolib is taken up readily by cancer cells and inhibits DNA replication in assays to assess global DNA synthesis or single-molecule bases by DNA fiber fluorography. In addition, we show that Zelpolib displays superior antiproliferative properties to methotrexate, 5-flourouracil, and cisplatin in triple-negative breast cancer cell line, pancreatic cancer cell line and platinum-resistant pancreatic cancer cell line. Pol δ is not only involved in DNA replication, it is also a key component in many DNA repair pathways. Pol δ is the key enzyme responsible for D-loop extension during homologous recombination. Indeed, Zelpolib shows robust inhibition of homologous recombination repair of DNA double-strand breaks and induces "BRCAness" in HR-proficient cancer cells and enhances their sensitivity to PARP inhibitors.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , DNA Polimerase III/antagonistas & inibidores , Replicação do DNA/efeitos dos fármacos , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Neoplasias/patologia , Antineoplásicos/isolamento & purificação , Simulação por Computador , Dano ao DNA , Bases de Dados de Produtos Farmacêuticos , Inibidores Enzimáticos/isolamento & purificação , Recombinação Homóloga , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Reparo de DNA por Recombinação , Células Tumorais Cultivadas
19.
DNA Repair (Amst) ; 81: 102656, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31326365

RESUMO

DNA polymerase δ (Pol δ) plays a central role in lagging strand DNA synthesis in eukaryotic cells, as well as an important role in DNA repair processes. Human Pol δ4 is a heterotetramer of four subunits, the smallest of which is p12. Pol δ3 is a trimeric form that is generated in vivo by the degradation of the p12 subunit in response to DNA damage, and during entry into S-phase. The biochemical properties of the two forms of Pol δ, as well as the changes in their distribution during the cell cycle, are reviewed from the perspective of understanding their respective cellular functions. Biochemical and cellular studies support a role for Pol δ3 in gap filling during DNA repair, and in Okazaki fragment synthesis during DNA replication. Recent studies of cells in which p12 expression is ablated, and are therefore null for Pol δ4, show that Pol δ4 is not required for cell viability. These cells have a defect in homologous recombination, revealing a specific role for Pol δ4 that cannot be performed by Pol δ3. Pol δ4 activity is required for D-loop displacement synthesis in HR. The reasons why Pol δ4 but not Pol δ3 can perform this function are discussed, as well as the question of whether helicase action is needed for efficient D-loop displacement synthesis. Pol δ4 is largely present in the G1 and G2/M phases of the cell cycle and is low in S phase. This is discussed in relation to the availability of Pol δ4 as an additional layer of regulation for HR activity during cell cycle progression.


Assuntos
Ciclo Celular , DNA Polimerase III/metabolismo , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Dano ao DNA , DNA Polimerase III/genética , Regulação da Expressão Gênica , Humanos
20.
Biochemistry ; 47(43): 11367-76, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18826257

RESUMO

Protein phosphatase-1 (PP1) is a Ser/Thr protein phosphatase that participates in the phosphorylation/dephosphorylation regulation of a diverse range of cellular processes. The PP1 catalytic subunit (PP1) achieves this by its ability to interact with many targeting subunits such that PP1 activity is thereby specified against phosphoprotein substrates in the microvicinity of its targeting subunit. DNA polymerase delta (Pol delta) is a key enzyme in mammalian chromosomal replication. It consists of four subunits, p125, p50, p68, and p12. We identify p68 as a novel PP1 targeting subunit. PP1 was shown to associate with human DNA polymerase delta by affinity chromatography and coimmunoprecipitation assays from mammalian cell lysates and in vitro by pull-down assays. The binding domain for PP1 was identified as the sequence KRVAL, a variant of the canonical RVxF PP1 binding motif. These studies provide the first evidence for the targeting of PP1 to DNA polymerase delta. We also show that CK2 phosphorylates the Pol delta p125, p68, and p12 subunits and that these phosphorylated subunits are substrates for PP1. These findings identify a new role for p68 as a PP1 targeting subunit that implicates PP1 in the dephosphorylation of Pol delta. Our findings also show that CK2 is a strong candidate for the protein kinase involved in the in vivo phosphorylation of p68.


Assuntos
RNA Helicases DEAD-box/química , DNA Polimerase III/metabolismo , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/metabolismo , Sítios de Ligação/genética , Domínio Catalítico/genética , RNA Helicases DEAD-box/genética , DNA Polimerase III/química , DNA Polimerase III/genética , Células HeLa , Humanos , Modelos Biológicos , Ligação Proteica/genética , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA