Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 35(20): 7903-20, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25995475

RESUMO

The accumulation and storage of information over time, temporal integration, is key to numerous behaviors. Many oculomotor tasks depend on integration of eye-velocity signals to eye-position commands, a transformation achieved by a hindbrain cell group termed the velocity-to-position neural integrator (VPNI). Although the VPNI's coding properties have been well characterized, its mechanism of function remains poorly understood because few links exist between neuronal activity, structure, and genotypic identity. To fill this gap, we used calcium imaging and single-cell electroporation during oculomotor behaviors to map VPNI neural activity in zebrafish onto a hindbrain scaffold consisting of alternating excitatory and inhibitory parasagittal stripes. Three distinct classes of VPNI cells were identified. One glutamatergic class was medially located along a stripe associated with the alx transcription factor; these cells had ipsilateral projections terminating near abducens motoneurons and collateralized extensively within the ipsilateral VPNI in a manner consistent with integration through recurrent excitation. A second glutamatergic class was more laterally located along a stripe associated with transcription factor dbx1b; these glutamatergic cells had contralateral projections collateralizing near abducens motoneurons, consistent with a role in disconjugate eye movements. A third class, immunohistochemically suggested to be GABAergic, was located primarily in the dbx1b stripe and also had contralateral projections terminating near abducens motoneurons; these cells collateralized extensively in the dendritic field of contralateral VPNI neurons, consistent with a role in coordinating activity between functionally opposing populations. This mapping between VPNI activity, structure, and genotype may provide a blueprint for understanding the mechanisms governing temporal integration.


Assuntos
Movimentos Oculares , Neurônios GABAérgicos/fisiologia , Genótipo , Neurônios Motores/fisiologia , Rombencéfalo/fisiologia , Animais , Proteínas do Olho/metabolismo , Feminino , Neurônios GABAérgicos/classificação , Neurônios GABAérgicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Neurônios Motores/classificação , Neurônios Motores/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
2.
Sci Rep ; 7(1): 16240, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176570

RESUMO

Granule cells at the input layer of the cerebellum comprise over half the neurons in the human brain and are thought to be critical for learning. However, little is known about granule neuron signaling at the population scale during behavior. We used calcium imaging in awake zebrafish during optokinetic behavior to record transgenically identified granule neurons throughout a cerebellar population. A significant fraction of the population was responsive at any given time. In contrast to core precerebellar populations, granule neuron responses were relatively heterogeneous, with variation in the degree of rectification and the balance of positive versus negative changes in activity. Functional correlations were strongest for nearby cells, with weak spatial gradients in the degree of rectification and the average sign of response. These data open a new window upon cerebellar function and suggest granule layer signals represent elementary building blocks under-represented in core sensorimotor pathways, thereby enabling the construction of novel patterns of activity for learning.


Assuntos
Sinalização do Cálcio , Cerebelo/metabolismo , Neurônios/metabolismo , Comportamento Espacial , Animais , Cerebelo/citologia , Cerebelo/fisiologia , Locomoção , Percepção Visual , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA