Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 44(3): 470-483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876240

RESUMO

Extensive, long-term exposure to cigarette smoke (CS) was recently suggested to be a risk factor for pulmonary hypertension, although further validation is required. The vascular effects of CS share similarities with the etiology of pulmonary hypertension, including vascular inflammation and remodeling. Thus, we examined the influence of CS exposure on the pathogenesis of monocrotaline (MCT)-induced pulmonary hypertension, hypothesizing that smoking might accelerate the development of primed pulmonary hypertension. CS was generated from 3R4F reference cigarettes, and rats were exposed to CS by inhalation at total particulate matter concentrations of 100-300 µg/L for 4 h/day, 7 days/week for 4 weeks. Following 1 week of initial exposure, rats received 60 mg/kg MCT and were sacrificed and analyzed after an additional 3 weeks of exposure. MCT induced hypertrophy in pulmonary arterioles and increased the Fulton index, a measure of right ventricular hypertrophy. Additional CS exposure exacerbated arteriolar hypertrophy but did not further elevate the Fulton index. No significant alterations were observed in levels of endothelin-1 and vascular endothelial growth factor, or in hematological and serum biochemical parameters. Short-term inhalation exposure to CS exacerbated arteriolar hypertrophy in the lung, although this effect did not directly aggravate the overworked heart under the current experimental conditions.


Assuntos
Fumar Cigarros , Hipertensão Pulmonar , Ratos , Animais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Monocrotalina/toxicidade , Monocrotalina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Exposição por Inalação/efeitos adversos , Ratos Sprague-Dawley , Hipertrofia , Artéria Pulmonar/patologia
2.
Arterioscler Thromb Vasc Biol ; 42(5): e117-e130, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35354309

RESUMO

BACKGROUND: Reactive oxygen species (ROS) and calcium ions (Ca2+) are among the major effectors of Ang II (angiotensin II) in vascular smooth muscle cells. ROS are related to Ca2+ signaling or contraction induced by Ang II, but little is known about their detailed functions. Here, NOX (NADPH oxidase), a major ROS source responsive to Ang II, was investigated regarding its contribution to Ca2+ signaling. METHODS: Vascular smooth muscle cells were primary cultured from rat aorta. Ca2+ and ROS were monitored mainly using fura-2 and HyPer family probes' respectively. Signals activating NOX were examined with relevant pharmacological inhibitors and genetic manipulation techniques. RESULTS: Ang II-induced ROS generation was found to be biphasic: the first phase of ROS production, which was mainly mediated by NOX1, was small and transient, preceding a rise in Ca2+, and the second phase of ROS generation, mediated by NOX1 and NOX4, was slow but sizeable, continuing over tens of minutes. NOX1-derived superoxide in the first phase is required for Ca2+ influx through nonselective cation channels. AT1R (Ang II type 1 receptor)-Gßγ-PI3Kγ (phosphoinositide 3-kinase γ) signaling pathway was responsible for the rapid activation of NOX1 in the first phase, while in the second phase, NOX1 was further activated by a separate AT1R-Gαq/11-PLC (phospholipase C)-PKCß (protein kinase C ß) signaling axis. Consistent with these observations, aortas from NOX1-knockout mice exhibited reduced contractility in response to Ang II, and thus the acute pressor response to Ang II was also attenuated in NOX1-knockout mice. CONCLUSIONS: NOX1 mediates Ca2+ signal generation and thereby contributes to vascular contraction and blood pressure elevation by Ang II.


Assuntos
Angiotensina II , Cálcio , NADPH Oxidase 1/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Pressão Sanguínea , Cálcio/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
3.
Arch Toxicol ; 95(2): 541-556, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33074372

RESUMO

Chloromethylisothiazolinone (CMIT) and methylisothiazolinone (MIT) are biocidal preservatives and the active ingredients in Kathon CG, which contains ca. 1.5% mixture of CMIT and MIT at a ratio of 3:1 (CMIT/MIT). CMIT/MIT was misused as humidifier disinfectant products, which caused serious health problems in Korea. Here, the vascular effects of CMIT/MIT were investigated to evaluate claims of putative cardiovascular toxicity observed in humidifier disinfectant users. CMIT/MIT did not affect the basal tension of the rat thoracic aorta up to 2.5 µg/mL in myograph experiments. Instead, pretreatment with CMIT/MIT impaired phenylephrine- or 5-hydroxytryptamine-induced vasoconstriction in a range of 0.5-2.5 µg/mL, which was largely irreversible and not recovered by washing out the CMIT/MIT. Similarly, the application of CMIT/MIT to pre-contracted aorta caused a gradual loss of tension. In primary cultured vascular smooth muscle cells (VSMCs), CMIT/MIT caused thiol depletion, which in turn led to cytosolic Zn2+ elevation and reactive oxygen species (ROS) formation. CMIT/MIT-induced shrinkage, detachment, and lysis of VSMCs depending on the concentration and the treatment time. All events induced by CMIT/MIT were prevented by a thiol donor N-acetylcysteine (NAC). Cytolysis could be inhibited by a Zn2+ chelator TPEN and a superoxide scavenger TEMPOL, whereas they did not affect shrinkage and detachment. In accordance with these results, CMIT/MIT-exposed aortas exhibited dissociation and collapse of tissue in histology analysis. Taken together, CMIT/MIT causes functional impairment and tissue damage to blood vessels by depleting thiol and thereby elevating cytosolic Zn2+ and generating ROS. Therefore, exposure to CMIT/MIT in consumer products may be a risk factor for cardiovascular disorders.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tiazóis/toxicidade , Zinco/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Desinfetantes/toxicidade , Células HEK293 , Humanos , Umidificadores , Masculino , Conservantes Farmacêuticos/toxicidade , Ratos , Ratos Sprague-Dawley , República da Coreia , Vasoconstrição/efeitos dos fármacos
4.
Acc Chem Res ; 51(11): 2829-2838, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30403337

RESUMO

Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for "point-of-care" testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialization of personalized healthcare devices increasingly within reach, e.g., wearable bioelectronics attached to the body that monitor the health information on users in real time. Additionally, the monitoring of harmful factors in the environment surrounding the user, such as air pollutants, chemicals, and ultraviolet light, is also important for health maintenance because such factors can have short- and long-term detrimental effects on the human body. The precise detection of chemical species from both the human body and the surrounding environment is crucial for personal health care because of the abundant information that such factors can provide when determining a person's health condition. In this respect, sensor applications based on an organic-transistor platform have various advantages, including signal amplification, molecular design capability, low cost, and mechanical robustness (e.g., flexibility and stretchability). This Account covers recent progress in organic transistor-based chemical sensors that detect various chemical species in the human body or the surrounding environment, which will be the core elements of wearable electronic devices. There has been considerable effort to develop high-performance chemical sensors based on organic-transistor platforms through material design and device engineering. Various experimental approaches have been adopted to develop chemical sensors with high sensitivity, selectivity, and stability, including the synthesis of new materials, structural engineering, surface functionalization, and device engineering. In this Account, we first provide a brief introduction to the operating principles of transistor-based chemical sensors. Then we summarize the progress in the fabrication of transistor-based chemical sensors that detect chemical species from the human body (e.g., molecules in sweat, saliva, urine, tears, etc.). We then highlight examples of chemical sensors for detecting harmful chemicals in the environment surrounding the user (e.g., nitrogen oxides, sulfur dioxide, volatile organic compounds, liquid-phase organic solvents, and heavy metal ions). Finally, we conclude this Account with a perspective on the wearable bioelectronics, especially focusing on organic electronic materials and devices.


Assuntos
Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Líquidos Corporais/metabolismo , Poluentes Ambientais/análise , Gases/análise , Humanos , Metais Pesados/análise , Compostos Orgânicos/análise , Compostos Orgânicos Voláteis/análise
5.
J Nat Prod ; 80(1): 196-200, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28068085

RESUMO

Despite the increasing attention on the therapeutic potential of Curcuma longa (turmeric), the biological activities of curcuminoids other than curcumin are not well understood. Here, we investigated antivasoconstrictive activities of C. longa extract and its ingredients using freshly isolated rat aortic rings. C. longa extract significantly suppressed agonist-stimulated vasoconstriction, and cyclocurcumin was found to be the most potent (IC50 against phenylephrine-induced vasoconstriction: 14.9 ± 1.0 µM) among the 10 tested ingredients including four curcuminoids. Cyclocurcumin significantly inhibited contraction of vascular smooth muscle, which was mediated by the suppression of myosin-light-chain phosphorylation and calcium influx via the L-type calcium channel. The inhibitory effect of cyclocurcumin was observed to be reversible and without cytotoxicity. Taken together, we demonstrated that cyclocurcumin, a bioactive ingredient in C. longa, may have a therapeutic potential as a novel antivasoconstrictive natural product.


Assuntos
Canais de Cálcio Tipo L/efeitos dos fármacos , Curcuma/química , Curcumina/isolamento & purificação , Curcumina/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Curcumina/química , Concentração Inibidora 50 , Estrutura Molecular , Fosforilação , Ratos
6.
Environ Toxicol ; 32(2): 690-704, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27087172

RESUMO

There was considerable evidence that exposure to cigarette smoke is associated with an increased risk for colon cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and colon cancer remains unclear. Moreover, there were only a few studies on effects of complexing substance contained in cigarette smoke on colon cancer. Thus, we further investigated whether cigarette smoke extract (CSE) affects the cell cycle, apoptosis and migration of human metastatic colon cancer cells, SW-620. MTT assay revealed that SW-620 cell proliferation was significantly inhibited following treatments with all CSEs, 3R4F, and two-domestic cigarettes, for 9 days in a concentration-dependent manner. Moreover, CSE treatments decreased cyclin D1 and E1, and increased p21 and p27 proteins by Western blot analysis in SW-620 cells. Additionally, the treatment of the cells with CSE contributed to these effects expressing by apoptosis-related proteins. An increased migration or invasion ability of SW-620 cells following CSE treatment was also confirmed by a scratch or fibronectin invasion assay in vitro. In addition, the protein levels of E-cadherin as an epithelial maker were down-regulated, while the mesenchymal markers, N-cadherin, snail, and slug, were up-regulated in a time-dependent manner. A metastatic marker, cathepsin D, was also down-regulated by CSE treatment. Taken together, these results indicate that CSE exposure in colon cancer cells may deregulate the cell growth by altering the expression of cell cycle-related proteins and pro-apoptotic protein, and stimulate cell metastatic ability by altering epithelial-mesenchymal transition (EMT) markers and cathepsin D expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 690-704, 2017.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Fumar/efeitos adversos , Antígenos CD , Apoptose/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Catepsina D/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Fumaça/efeitos adversos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
Toxicol Mech Methods ; 27(7): 501-510, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28440100

RESUMO

AIM: Nicotine exerts a number of physiological effects. The purpose of this study was to determine the effects of nicotine on thioacetamide (TAA)-induced liver fibrosis in mice. MATERIALS AND METHODS: For in vivo experiments, hepatic fibrosis was induced by TAA (0.25 g/kg, i.p.) three times a week for 6 weeks. Mice of TAA treated groups were administered daily with distilled water and nicotine (50 or 100 µg/mL) via gastrogavage throughout the experimental period. For in vitro experiments, HepG2 (human liver cancer cell line) and LX-2 (human hepatic stellate cell line) were used to determine oxidative stress and fibrosis, respectively. RESULTS: Compared to control groups, TAA treated groups had significantly differences in serum alanine transferase and aspartate aminotransferase levels and nicotine accentuated liver injury. Moreover, nicotine increased the mRNA levels of TAA-induced transforming growth factor-ß (TGF-ß) and collagen type I alpha 1 in the liver. Nicotine also increased TAA-induced oxidative stress. Histological examination confirmed that nicotine aggravated the degree of fibrosis caused by TAA treatment. Additionally, nicotine enhanced hepatic stellate cell activation via promoting the expression of α-smooth muscle actin. CONCLUSIONS: Oral administration of nicotine significantly aggravated TAA-induced hepatic fibrosis in mice through enhancing TGF-ß secretion and TAA-induced oxidative stress. The increase in TGF-ß levels might be associated with the strengthening of oxidative processes, subsequently leading to increased hepatic stellate cell activation and extracellular matrix deposition. These results suggest that patients with liver disease should be advised to abandon smoking since nicotine may exacerbate hepatic fibrosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Fungicidas Industriais/agonistas , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nicotina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tioacetamida/agonistas , Animais , Biomarcadores/sangue , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cadeia alfa 1 do Colágeno Tipo I , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fungicidas Industriais/toxicidade , Células Hep G2 , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Cirrose Hepática/etiologia , Masculino , Camundongos Endogâmicos C57BL , Nicotina/administração & dosagem , Distribuição Aleatória , Tioacetamida/toxicidade
8.
Mol Pharmacol ; 89(2): 313-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643379

RESUMO

The thiazolidinedione antidiabetic drugs rosiglitazone and pioglitazone exert antiplatelet effects. Such effects are known to be mediated by the peroxisome proliferator-activated receptor γ (PPARγ), an acknowledged target of the thiazolidinediones, although the molecular mechanism is elusive. Recently, AMP-activated protein kinase (AMPK) signaling was reported to inhibit platelet aggregation. Because AMPK is another target of the thiazolidinediones, the impact of rosiglitazone and pioglitazone on platelet AMPK and its involvement in aggregation were investigated to assess the contribution of AMPK to the antiplatelet activity of these agents. Treatment with rosiglitazone stimulated both AMPK and PPARγ in isolated rat platelets. However, the concentration and the treatment time required for activation were distinct from each other. Indeed, stimulation of AMPK and PPARγ were discrete events without any cross-activation in platelets. Activation of AMPK or PPARγ by rosiglitazone rendered platelets less responsive to aggregatory stimuli such as collagen, ADP, and thrombin. However, the resultant efficacy caused by activating AMPK was higher than that attributable to PPARγ stimulation. Similar results were obtained with pioglitazone. Taken together, rosiglitazone and pioglitazone inhibit platelet aggregation by activating AMPK. AMPK functions as a potential target of rosiglitazone and pioglitazone for their antiplatelet activity, although the in vivo or clinical relevance remains to be assessed.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Tiazolidinedionas/farmacologia , Animais , Masculino , Pioglitazona , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Resultado do Tratamento
9.
Biosci Biotechnol Biochem ; 80(3): 493-500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26539820

RESUMO

Rhus verniciflua Stokes (RVS) exert cardiovascular protective activity by promoting blood circulation, but its active ingredients and underlying mechanism have yet to be identified. This study investigated the vascular effects of RVS, focusing on vasoconstriction and smooth muscle Ca(2+) signaling. RVS heartwood extract attenuated contraction of aortic rings induced by the vasoconstrictors serotonin and phenylephrine, and inhibited the Ca(2+) signaling evoked by serotonin in vascular smooth muscle cells. Subsequent activity-guided fractionation identified fisetin as an active constituent exerting a Ca(2+) inhibitory effect. Fisetin could inhibit major Ca(2+) mobilization pathways including extracellular Ca(2+) influx mediated by the L-type voltage-gated Ca(2+) channel, Ca(2+) release from the intracellular store and store-operated Ca(2+) entry. In accordance with Ca(2+) inhibitory effect, fisetin attenuated vasoconstriction by serotonin and phenylephrine. These results suggest that the anticontractile effect, which is presumably mediated by inhibition of Ca(2+) signaling, may contribute to the improvement of blood circulation by RVS.


Assuntos
Aorta/efeitos dos fármacos , Cálcio/metabolismo , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Rhus/química , Vasoconstrição/efeitos dos fármacos , Animais , Aorta/citologia , Aorta/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Flavonóis , Masculino , Ratos , Ratos Sprague-Dawley
10.
Proc Natl Acad Sci U S A ; 110(35): E3281-90, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23918355

RESUMO

The future of safe cell-based therapy rests on overcoming teratoma/tumor formation, in particular when using human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Because the presence of a few remaining undifferentiated hPSCs can cause undesirable teratomas after transplantation, complete removal of these cells with no/minimal damage to differentiated cells is a prerequisite for clinical application of hPSC-based therapy. Having identified a unique hESC signature of pro- and antiapoptotic gene expression profile, we hypothesized that targeting hPSC-specific antiapoptotic factor(s) (i.e., survivin or Bcl10) represents an efficient strategy to selectively eliminate pluripotent cells with teratoma potential. Here we report the successful identification of small molecules that can effectively inhibit these antiapoptotic factors, leading to selective and efficient removal of pluripotent stem cells through apoptotic cell death. In particular, a single treatment of hESC-derived mixed population with chemical inhibitors of survivin (e.g., quercetin or YM155) induced selective and complete cell death of undifferentiated hPSCs. In contrast, differentiated cell types (e.g., dopamine neurons and smooth-muscle cells) derived from hPSCs survived well and maintained their functionality. We found that quercetin-induced selective cell death is caused by mitochondrial accumulation of p53 and is sufficient to prevent teratoma formation after transplantation of hESC- or hiPSC-derived cells. Taken together, these results provide the "proof of concept" that small-molecule targeting of hPSC-specific antiapoptotic pathway(s) is a viable strategy to prevent tumor formation by selectively eliminating remaining undifferentiated pluripotent cells for safe hPSC-based therapy.


Assuntos
Células-Tronco Pluripotentes/citologia , Bibliotecas de Moléculas Pequenas , Teratoma/patologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Apoptose , Proteína 10 de Linfoma CCL de Células B , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Mitocôndrias/metabolismo , Naftoquinonas/farmacologia , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-Tronco , Survivina , Teratoma/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Korean J Physiol Pharmacol ; 20(5): 547-56, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27610042

RESUMO

Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K(+) channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K(+) current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K(+) channels (TASK-2). NIOK in the presence of K(+) channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

12.
FASEB J ; 28(7): 3197-204, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652948

RESUMO

Endothelial dysfunction is defined as impairment of the balance between endothelium-dependent vasodilation and constriction. Despite evidence of uric acid-induced endothelial dysfunction, a relationship with insulin resistance has not been clearly established. In this study, we investigated the role of vascular insulin resistance in uric acid-induced endothelial dysfunction. Uric acid inhibited insulin-induced endothelial nitric oxide synthase (eNOS) phosphorylation and NO production more substantially than endothelin-1 expression in HUVECs, with IC50 of 51.0, 73.6, and 184.2, respectively. Suppression of eNOS phosphorylation and NO production by uric acid was PI3K/Akt-dependent, as verified by the transfection with p110. Treatment of rats with the uricase inhibitor allantoxanamide induced mild hyperuricemia and increased mean arterial pressure by 25%. While hyperuricemic rats did not show systemic insulin resistance, they showed impaired vasorelaxation induced by insulin by 56%. A compromised insulin response in terms of the Akt/eNOS pathway was observed in the aortic ring of hyperuricemic rats. Coadministration with allopurinol reduced serum uric acid levels and blood pressure and restored the effect of insulin on Akt-eNOS pathway and vasorelaxation. Taken together, uric acid induced endothelial dysfunction by contributing to vascular insulin resistance in terms of insulin-induced NO production, potentially leading to the development of hypertension.-Choi, Y.-J., Yoon, Y., Lee, K.-Y., Hien, T. T., Kang, K. W., Kim, K.-C., Lee, J., Lee, M.-Y., Lee, S. M., Kang, D.-H., Lee, B.-H. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis.


Assuntos
Endotélio Vascular/metabolismo , Resistência à Insulina/fisiologia , Óxido Nítrico/metabolismo , Ácido Úrico/farmacologia , Animais , Pressão Arterial/fisiologia , Células Cultivadas , Endotelina-1/metabolismo , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hiperuricemia/metabolismo , Hiperuricemia/fisiopatologia , Insulina/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
13.
J Toxicol Environ Health A ; 78(4): 226-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674826

RESUMO

Toxicokinetics of zinc oxide nanoparticles (ZnONP) was studied in rats via a single intravenous (iv) injection and a single oral administration (3 mg/kg or 30 mg/kg), respectively. Blood concentrations of zinc (Zn) were monitored for 7 d and tissue distribution were determined in liver, kidneys, lung, spleen, thymus, brain, and testes. To ascertain the excretion of ZnONP, Zn levels in urine and feces were measured for 7 d. ZnONP were not readily absorbed from the gastrointestinal tract (GIT) after oral administration and were excreted mostly in feces. When the nanoparticles were injected iv to rats at a dose of 30 mg/kg, peak concentration appeared at 5 min but returned to normal range by d 2 (48 h after injection). ZnONP were distributed mainly to liver, kidneys, lung, and spleen, but not to thymus, brain, and testes. The distribution level was significantly decreased to normal by d 7. Feces excretion levels after iv injection supported biliary excretion of ZnONP. In rats injected iv with 30 mg/kg, mitotic figures in hepatocytes were significantly increased and multifocal acute injuries with dark brown pigment were noted in lungs, while no significant damage was observed in rats treated orally with the same dosage.


Assuntos
Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Fezes/química , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Injeções Intravenosas , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Nanopartículas/química , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Timo/efeitos dos fármacos , Timo/metabolismo , Distribuição Tecidual , Zinco/farmacocinética , Óxido de Zinco/farmacocinética
14.
Korean J Physiol Pharmacol ; 19(3): 257-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25954131

RESUMO

It is well known that cigarette smoke can cause erectile dysfunction by affecting the penile vascular system. However, the exact effects of nicotine on the corpus cavernosum remains poorly understood. Nicotine has been reported to cause relaxation of the corpus cavernosum; it has also been reported to cause both contraction and relaxation. Therefore, high concentrations of nicotine were studied in strips from the rabbit corpus cavernosum to better understand its effects. The proximal penile corpus cavernosal strips from male rabbits weighing approximately 4 kg were used in organ bath studies. Nicotine in high concentrations (10(-5)~10(-4) M) produced dose-dependent contractions of the corpus cavernosal strips. The incubation with 10(-5) M hexamethonium (nicotinic receptor antagonist) significantly inhibited the magnitude of the nicotine associated contractions. The nicotine-induced contractions were not only significantly inhibited by pretreatment with 10(-5) M indomethacin (nonspecific cyclooxygenase inhibitor) and with 10(-6) M NS-398 (selective cyclooxygenase inhibitor), but also with 10(-6) M Y-27632 (Rho kinase inhibitor). Ozagrel (thromboxane A2 synthase inhibitor) and SQ-29548 (highly selective TP receptor antagonist) pretreatments significantly reduced the nicotine-induced contractile amplitude of the strips. High concentrations of nicotine caused contraction of isolated rabbit corpus cavernosal strips. This contraction appeared to be mediated by activation of nicotinic receptors. Rho-kinase and cyclooxygenase pathways, especially cyclooxygenase-2 and thromboxane A2, might play a pivotal role in the mechanism associated with nicotine-induced contraction of the rabbit corpus cavernosum.

15.
Food Chem Toxicol ; 185: 114446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244666

RESUMO

The aberrant increase or dysregulation of cytosolic Zn2+ concentration ([Zn2+]cyt) has been associated with cellular dysfunction and cytotoxicity. In this study, we postulated that Zn2+ mediates the cytotoxicity of thiol-reactive electrophiles. This notion was grounded on earlier research, which revealed that thiol-reactive electrophiles may disrupt Zn2+-binding motifs, consequently causing Zn2+ to be released from Zn2+-binding proteins, and leading to a surge in [Zn2+]cyt. The thiol-reactive electrophiles N-ethylmaleimide (NEM) and diamide were observed to induce an increase in [Zn2+]cyt, possibly through the impairment of Zn2+-binding motifs, and subsequent stimulation of reactive oxygen species (ROS) formation, resulting in cytotoxicity in primary cultured rat vascular smooth muscle cells. These processes were negated by the thiol donor N-acetyl-L-cysteine and the Zn2+ chelator TPEN. Similar outcomes were detected with co-treatment involving Zn2+ and Zn2+ ionophores such as pyrithione or disulfiram. Moreover, TPEN was found to inhibit cytotoxicity triggered by short-term exposure to various thiol-reactive electrophiles including hydrogen peroxide, acrylamide, acrylonitrile, diethyl maleate, iodoacetic acid, and iodoacetamide. In conclusion, our findings suggest that cytosolic Zn2+ acts as a universal mediator in the cytotoxic effects produced by thiol-reactive electrophiles.


Assuntos
Etilenodiaminas , Compostos de Sulfidrila , Zinco , Ratos , Animais , Compostos de Sulfidrila/metabolismo , Zinco/metabolismo , Músculo Liso Vascular/metabolismo , Citosol , Ácidos/metabolismo
16.
Heliyon ; 10(3): e25045, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317961

RESUMO

Inhalation of polyhexamethylene guanidine phosphate (PHMG) can cause pulmonary fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) are enzymes that produce reactive oxygen species, which may be involved in tissue damage in various lung diseases. To investigate whether the Nox2 isoform of Nox is involved in the progression of PHMG-induced lung damage, we studied the contribution of Nox2 in PHMG-induced lung injury in Nox2-deficient mice. We treated wild-type (WT) and Nox2 knockout mice with a single intratracheal instillation of 1.1 mg/kg PHMG and sacrificed them after 14 days. We analyzed lung histopathology and the number of total and differential cells in the bronchoalveolar lavage fluid. In addition, the expressions of cytokines, chemokines, and profibrogenic genes were analyzed in the lung tissues. Based on our results, Nox2-deficient mice showed less PHMG-induced pulmonary damage than WT mice, as indicated by parameters such as body weight, lung weight, total cell count, cytokine and chemokine levels, fibrogenic mediator expression, and histopathological findings. These findings suggest that Nox2 may have the potential to contribute to PHMG-induced lung injury and serves as an essential signaling molecule in the development of PHMG-induced pulmonary fibrosis by regulating the expression of profibrogenic genes.

18.
Toxicol Res ; 40(2): 273-283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525133

RESUMO

Smoking is a well-established risk factor for various pathologies, including pulmonary diseases, cardiovascular disorders, and cancers. The toxic effects of cigarette smoke (CS) are mediated through multiple pathways and diverse mechanisms. A key pathogenic factor is oxidative stress, primarily induced by excessive formation of reactive oxygen species. However, it remains unclear whether smoking directly induces systemic oxidative stress or if such stress is a secondary consequence. This study aimed to determine whether short-term inhalation exposure to CS induces oxidative stress in extrapulmonary organs in addition to the lung in a murine model. In the experiment, 3R4F reference cigarettes were used to generate CS, and 8-week-old male BALB/c mice were exposed to CS at a total particulate matter concentration of either 0 or 800 µg/L for four consecutive days. CS exposure led to an increase in neutrophils, eosinophils, and total cell counts in bronchoalveolar lavage fluid. It also elevated levels of lactate dehydrogenase and malondialdehyde (MDA), markers indicative of tissue damage and oxidative stress, respectively. Conversely, no significant changes were observed in systemic oxidative stress markers such as total oxidant scavenging capacity, MDA, glutathione (GSH), and the GSH/GSSG ratio in blood samples. In line with these findings, CS exposure elevated NADPH oxidase (NOX)-dependent superoxide generation in the lung but not in other organs like the liver, kidney, heart, aorta, and brain. Collectively, our results indicate that short-term exposure to CS induces inflammation and oxidative stress in the lung without significantly affecting oxidative stress in extrapulmonary organs under the current experimental conditions. NOX may play a role in these pulmonary-specific events.

19.
Korean J Physiol Pharmacol ; 17(4): 359-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23946696

RESUMO

Plasma pH can be altered during pregnancy and at labor. Membrane excitability of smooth muscle including uterine muscle is suppressed by the activation of K(+) channels. Because contractility of uterine muscle is regulated by extracellular pH and humoral factors, K(+) conductance could be connected to factors regulating uterine contractility during pregnancy. Here, we showed that TASK-2 inhibitors such as quinidine, lidocaine, and extracellular acidosis produced contraction in uterine circular muscle of mouse. Furthermore, contractility was significantly increased in pregnant uterine circular muscle than that of non-pregnant muscle. These patterns were not changed even in the presence of tetraetylammonium (TEA) and 4-aminopyridine (4-AP). Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretchactivated channels in myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed increased immunohistochemical expression of TASK-2. Therefore, TASK-2, seems to play a key role during regulation of myometrial contractility in the pregnancy and provides new insight into preventing preterm delivery.

20.
Antioxidants (Basel) ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760035

RESUMO

Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA