Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 597: 1-7, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35121177

RESUMO

INTRODUCTION: Demyelinating Charcot-Marie-Tooth disease (CMT) is caused by mutations in the genes that encode myelinating proteins or their transcription factors. Our study thus sought to assess the therapeutic effects of cytokines secreted from mesenchymal stem cells (MSCs) on this disease. METHODS: The therapeutic potential of Wharton's jelly MSCs (WJ-MSCs) and cytokines secreted by WJ-MSCs was evaluated on Schwann cells (SCs) exhibiting demyelination features, as well as a mouse model of demyelinating CMT. RESULTS: Co-culture with WJ-MSC protected PMP22-overexpressing SCs from apoptotic cell death. Using a cytokine array, the secretion of growth differentiation factor-15 (GDF-15) and amphiregulin (AREG) was found to be elevated in WJ-MSCs when co-incubated with the PMP22-overexpressing SCs. Administration of both cytokines into trembler-J (Tr-J) mice, an animal model of CMT, significantly enhanced motor nerve conduction velocity compared to the control group. More importantly, this treatment alleviated the demyelinating phenotype of Tr-J mice, as demonstrated by an improvement in the mean diameter and g-ratio of the myelinated axons. CONCLUSIONS: Our findings demonstrated that WJ-MSCs alleviate the demyelinating phenotype of CMT via the secretion of several cytokines. Further elucidation of the underlying mechanisms of GDF-15 and AREG in myelination might provide a robust basis for the development of effective therapies against demyelinating CMT.

2.
Biochem Biophys Res Commun ; 482(4): 843-848, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27888104

RESUMO

In this study, we examined whether the peroxisome proliferator-activated receptor γ (PPARγ) agonists, ciglitazone (CGZ) and troglitazone (TGZ), induce cell death in human cervical cancer HeLa cells. The cells were treated with a range of CGZ or TGZ doses for 24 or 48 h. Low concentrations of CGZ (≤10 µM) or TGZ (≤20 µM) had no effect on cell viability whereas higher doses induced cell death in a time- and dose-dependent manner as evidenced by the detection of activated caspase-3 and PARP cleavage. Treatment with the PPARγ antagonist GW9662 followed by PPARγ agonists did not increase CGZ- or TGZ-induced cell death, indicating that PPARγ agonists induced HeLa cell death independently of PPARγ. Moreover, ERK1/2 activation was observed at a CGZ concentration of 25 µM and a TGZ concentration of 35 µM, both of which induced cell death. To elucidate the role of ERK1/2 activated by the two PPARγ agonists, the effect of U0126, an inhibitor of ERK1/2, on PPARγ-agonist-induced cell death was examined. Treatment with 10 or 20 µM U0126 followed by CGZ or TGZ induced the down-regulation of ERK1/2 activity and a decrease in Bcl-2 expression accompanied by the collapse of mitochondrial membrane potential, which in turn significantly enhanced CGZ- or TGZ-induced apoptotic cell death. Our results suggest that PPARγ agonists are capable of inducing apoptotic cell death in HeLa cells independently of PPARγ and that inhibition of ERK1/2 activity offers a strategy to enhance the cytotoxicity of PPARγ agonists in the treatment of cervical cancer.


Assuntos
Antineoplásicos/farmacologia , Cromanos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Butadienos/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colo do Útero/citologia , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Células HeLa , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , PPAR gama/metabolismo , Troglitazona , Neoplasias do Colo do Útero/metabolismo
3.
Cell Biochem Funct ; 34(1): 16-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26778408

RESUMO

In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.


Assuntos
Tecido Adiposo/citologia , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/metabolismo , Contagem de Células , Técnicas de Cultura de Células , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citometria de Fluxo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Células-Tronco Mesenquimais/metabolismo
4.
Biochem Biophys Res Commun ; 463(4): 894-9, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26074143

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), either alone or in combination with other anti-cancer agents, is a promising new strategy for the treatment of cancer. However, aberrant PI3K/Akt/mTOR survival signaling may confer TRAIL resistance by altering the balance between pro- and anti-apoptotic proteins. In the present study, we showed that the Akt/mTOR inhibitor RAD001 (everolimus) induced cell death in a dose-dependent manner and enhanced TRAIL-induced apoptosis in human leukemic Jurkat T cells, which show PI3K/Akt/mTOR pathway activation and basal expression levels of death receptor (DR) 5 (TRAIL-R2). Investigation of the effect of RAD001 treatment on the expression of TRAIL receptors (TRAIL-Rs) in Jurkat T cells showed that RAD001 significantly upregulated DR5 by up to 51.22%, but not other TRAIL-Rs such as DR4 (TRAIL-R1), decoy receptor (DcR) 1 (TRAIL-R3), and DcR2 (TRAIL-R4). Pretreatment with DR5:Fc chimera abrogated the RAD001-induced increase of TRAIL cytotoxicity, indicating that the upregulation of DR5 by RAD001 plays a role in enhancing the susceptibility of Jurkat T cells to TRAIL. Our results indicate that combination treatment with RAD001 and TRAIL may be a novel therapeutic strategy in leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia/patologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Sirolimo/análogos & derivados , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Regulação para Cima/efeitos dos fármacos , Apoptose/fisiologia , Relação Dose-Resposta a Droga , Everolimo , Humanos , Células Jurkat , Leucemia/fisiopatologia , Sirolimo/farmacologia
5.
Ann Hematol ; 92(12): 1595-602, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23835655

RESUMO

To overcome the limitations of allogeneic hematopoietic stem cell transplantation (HSCT), we conducted a study to identify a strategy for enhancing hematopoietic stem cell (HSC) engraftment during HSCT. Co-transplantation experiments with mesenchymal stem cells (MSCs) derived from adult human tissues including bone marrow (BM), adipose tissue (AT), and umbilical cord blood (CB) were conducted. We showed that AT-MSCs and CB-MSCs enhanced the engraftment of HSCs as effectively as BM-MSCs in NOD/SCID mice, suggesting that AT-MSCs and CB-MSCs can be used as alternative stem cell sources for enhancing the engraftment and homing of HSCs. CB-MSCs derived from different donors showed different degrees of efficacy in enhancing the engraftment of HSCs. The most effective CB-MSCs showed higher proliferation rates and secreted more MCP-1, RANTES, EGF, and VEGF. Our results suggest that AT-MSCs and CB-MSCs could be alternative stem cell sources for co-transplantation in HSCT. Furthermore, in terms of MSCs' heterogeneity, characteristics of each population of MSCs are considerable factors for selecting MSCs suitable for co-transplantation with HSC.


Assuntos
Sobrevivência de Enxerto/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/fisiologia , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Tecido Adiposo/transplante , Animais , Células da Medula Óssea/fisiologia , Proliferação de Células , Células Cultivadas , Sangue Fetal/fisiologia , Sangue Fetal/transplante , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
6.
Biochem Biophys Res Commun ; 417(1): 552-7, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22177955

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 µM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 µM CGZ effectively induced cell death after pretreatment with 30 µM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 µM) were sufficient to induce cell death, although higher concentrations of CGZ (≥30 µM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.


Assuntos
Apoptose/efeitos dos fármacos , Glioma/metabolismo , PPAR gama/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Anilidas/farmacologia , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
7.
Am J Cancer Res ; 12(7): 3373-3389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968322

RESUMO

Targeting tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling is a promising approach in cancer treatment. Although ERK and/or NF-κB signaling is involved in the expression of TRAIL receptors (TRAIL-R), the exact underlying mechanisms remain unknown. In this study, we evaluated the role of ERK2 and NF-κB in the cytotoxicity of TRAIL during cisplatin treatment. Cisplatin treatment of neuroepithelioma cells (SK-N-MC) significantly induced ERK2 activation and increased TRAIL cytotoxicity via the upregulation of death receptor 5 (DR5) expression. In partial ERK2 knockdown cell lines that maintained only basal levels of ERK2 activity, cisplatin treatment did not increase ERK2 activity or DR5 expression. These findings indicate that induced (rather than basal) ERK2 activity enhances TRAIL susceptibility via DR5 expression. In complete ERK2 knockdown cell lines with no basal ERK2 activity, DR4, DR5, and DcRs expression levels were increased, and additional treatment with cisplatin did not further increase TRAIL-R expression. Chemical inhibition of ERK2 also enhanced TRAIL cytotoxicity by upregulating DR4 and DR5 expression. These findings indicate that basal ERK2 activity suppresses TRAIL-R expression. Both basal and inducible ERK2 activities regulate TRAIL-R expression via the NF-κB signaling pathway. Overall, our findings suggest that the ERK2/NF-κB signaling pathway has a dual role in TRAIL susceptibility by differentially regulating TRAIL-R expression in the same cellular system.

8.
Exp Mol Med ; 54(8): 1277-1289, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36038590

RESUMO

Prominin-1 (PROM1), also known as CD133, is expressed in hepatic progenitor cells (HPCs) and cholangiocytes of the fibrotic liver. In this study, we show that PROM1 is upregulated in the plasma membrane of fibrotic hepatocytes. Hepatocellular expression of PROM1 was also demonstrated in mice (Prom1CreER; R26TdTom) in which cells expressed TdTom under control of the Prom1 promoter. To understand the role of hepatocellular PROM1 in liver fibrosis, global and liver-specific Prom1-deficient mice were analyzed after bile duct ligation (BDL). BDL-induced liver fibrosis was aggravated with increased phosphorylation of SMAD2/3 and decreased levels of SMAD7 by global or liver-specific Prom1 deficiency but not by cholangiocyte-specific Prom1 deficiency. Indeed, PROM1 prevented SMURF2-induced SMAD7 ubiquitination and degradation by interfering with the molecular association of SMAD7 with SMURF2. We also demonstrated that hepatocyte-specific overexpression of SMAD7 ameliorated BDL-induced liver fibrosis in liver-specific Prom1-deficient mice. Thus, we conclude that PROM1 is necessary for the negative regulation of TGFß signaling during liver fibrosis.


Assuntos
Antígeno AC133 , Cirrose Hepática , Proteína Smad7 , Antígeno AC133/genética , Antígeno AC133/metabolismo , Animais , Fibrose , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Proteína Smad7/genética , Proteína Smad7/metabolismo , Fatores de Transcrição/metabolismo
10.
Pediatr Hematol Oncol ; 28(8): 682-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023463

RESUMO

Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) enhance the engraftment of human hematopoietic stem cells (HSCs) when they are cotransplanted in animal and human studies. However, the type of MSCs that preferentially facilitate the engraftment and homing of HSCs is largely unknown. The authors categorized UCB-MSCs as the least-effective MSCs (A) or most-effective MSCs (B) at enhancing the engraftment of HSCs, and compared the gene expression profiles of various cytokines and growth factors in the UCB-MSC populations. The most-effective UCB-MSCs (B) secreted higher levels of several factors, including chemokine (C-X-C motif) ligand 12 (CXCL12), regulated upon activation, normal T cells expressed and secreted (RANTES), epithelial growth factor (EGF), and stem cell factor (SCF), which are required for the engraftment and homing of HSCs. By contrast, levels of growth-related oncogene (GRO), insulin-like growth factor-binding protein 1 (IGFBP1), and interleukin-8 (IL-8), which are associated with immune inflammation, were secreted at higher levels in UCB-MSCs (A). In addition, there were no differences between the transcripts of the 2 UCB-MSC populations after interferon-gamma (IFN-γ) stimulation, except for cyclooxygenase (COX)-1. Based on these findings, the authors propose that these chemokines may be useful for modulating these cells in a clinical setting and potentially for enhancing the effectiveness of the engraftment and homing of HSCs.


Assuntos
Quimiocinas/metabolismo , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Células Cultivadas , Quimiocinas/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Cell Immunol ; 259(2): 150-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19608159

RESUMO

Mesenchymal stem cells (MSCs), which evoke only minimal immune reactivity, may have anti-inflammatory and immunomodulatory effects. In this study, we conducted a comparative analysis of the immunomodulatory properties of MSCs derived from adult human tissues including bone marrow (BM), adipose tissues (AT), umbilical cord blood (CB), and cord Wharton's jelly (WJ). Using a multiple cytokine detection assay, we showed that there were no significant differences in levels of secreted factors from non-stimulated MSCs. We compared the immunosuppressive effect of BM-MSCs, AT-MSCs, CB-MSCs, and WJ-MSCs on phytohemagglutinin-induced T-cell proliferation. AT-MSCs, CB-MSCs, and WJ-MSCs effectively suppressed mitogen-induced T-cell proliferation as effectively as did BM-MSCs. Levels of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha secreted from activated T-cells increased over time, but these levels were significantly reduced when cocultured with each type of MSCs. In addition, the expression of hepatocyte growth factor, IL-10, transforming growth factor-beta(1), cyclooxygenase (COX)-1, and COX-2 were unchanged in MSCs treated with IFN-gamma and/or TNF-alpha, while indoleamine 2,3-dioxygenase (IDO) expression increased. IFN-gamma and/or TNF-alpha produced by activated T-cells were correlated with induction of IDO expression by MSCs, which, in turn, suppressed T-cell proliferation. These findings suggest that MSCs derived from AT, CB, or WJ could be substituted for BM-MSCs for treatment of allogeneic conflicts.


Assuntos
Células-Tronco Mesenquimais/imunologia , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Antígenos CD/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Proliferação de Células , Citocinas/genética , Citocinas/imunologia , Sangue Fetal/citologia , Sangue Fetal/imunologia , Citometria de Fluxo , Humanos , Immunoblotting , Células-Tronco Mesenquimais/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
13.
Leukemia ; 33(3): 597-611, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30705410

RESUMO

Mesenchymal stem cells (MSCs) are known for being multi-potent. However, they also possess anticancer properties, which has prompted efforts to adapt MSCs for anticancer therapies. However, MSCs have also been widely implicated in pathways that contribute to tumor growth. Numerous studies have been conducted to adapt MSCs for further clinical use; however, the results have been inconclusive, possibly due to the heterogeneity of MSC populations. Moreover, the conflicting roles of MSCs in tumor inhibition and tumor growth impede their adaptation for anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in hematologic malignancies are not as well established as they are for solid malignancies, and data comparing them are still limited. Herein the effect of MSCs on hematologic malignancies, such as leukemia and lymphoma, their mechanisms, sources of MSCs, and their effects on different types of cancer, have been discussed. This review describes how MSCs preserve both antitumorigenic and protumorigenic effects, as they tend to not only inhibit tumor growth by suppressing tumor cell proliferation but also promote tumor growth by suppressing tumor cell apoptosis. Thus clinical studies trying to adapt MSCs for anticancer therapies should consider that MSCs could actually promote hematologic cancer progression. It is necessary to take extreme care while developing MSC-based cell therapies in order to boost anticancer properties while eliminating tumor-favoring effects. This review emphasizes that research on the therapeutic applications of MSCs must consider that they exert both antitumorigenic and protumorigenic effects on hematologic malignancies.


Assuntos
Neoplasias Hematológicas/patologia , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Humanos
14.
Cell Prolif ; 52(3): e12577, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30724400

RESUMO

OBJECTIVES: This study aims to explore the roles of N-myc and caspase-8 in TRAIL-resistant IMR-32 cells which exhibit MYCN oncogene amplification and lack caspase-8 expression. MATERIALS AND METHODS: We established N-myc-downregulated IMR-32 cells using shRNA lentiviral particles targeting N-myc and examined the effect the N-myc inhibition on TRAIL susceptibility in human neuroblastoma IMR-32 cells expressing caspase-8. RESULTS: Cisplatin treatment in IMR-32 cells increased the expression of death receptor 5 (DR5; TRAIL-R2), but not other receptors, via downregulation of NF-κB activity. However, the cisplatin-mediated increase in DR5 failed to induce cell death following TRAIL treatment. Furthermore, interferon (IFN)-γ pretreatment increased caspase-8 expression in IMR-32 cells, but cisplatin failed to trigger TRAIL cytotoxicity. We downregulated N-myc expression in IMR-32 cells using N-myc-targeting shRNA. These cells showed decreased growth rate and Bcl-2 expression accompanied by a mild collapse in the mitochondrial membrane potential as compared with those treated with scrambled shRNA. TRAIL treatment in N-myc-negative cells expressing caspase-8 following IFN-γ treatment significantly triggered apoptotic cell death. Concurrent treatment with cisplatin enhanced TRAIL-mediated cytotoxicity, which was abrogated by an additional pretreatment with DR5:Fc chimera protein. CONCLUSIONS: N-myc and caspase-8 expressions are involved in TRAIL susceptibility in IMR-32 cells, and the combination of treatment with cisplatin and TRAIL may serve as a promising strategy for the development of therapeutics against neuroblastoma that is controlled by N-myc and caspase-8 expression.


Assuntos
Caspase 8/genética , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/terapia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Expressão Gênica , Genes myc , Humanos , Interferon gama/administração & dosagem , Sistema de Sinalização das MAP Quinases , NF-kappa B/genética , NF-kappa B/metabolismo , Neuroblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteínas Recombinantes/administração & dosagem
15.
Int J Cancer ; 122(10): 2380-4, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18224693

RESUMO

Akt/protein kinase B signaling is very important for cancer cell survival and growth when cells are exposed to various apoptotic stimuli. Akt is constitutively activated in NSCLC cells and is a potential target for enhancing the cytotoxicity of chemotherapeutic agents in treatment of NSCLC. In our study, we investigated whether down-regulating Akt1 using RNAi techniques can enhance sensitivity to cisplatin in NSCLC cells. An siRNA targeting Akt1 significantly decreased the protein level of Akt1 and the activity of ERK. Treatment of these cells with 20 muM cisplatin increased apoptotic cell death approximately 2.6-fold compared to cells transfected with a scrambled siRNA. While Akt activity was slightly reduced, ERK activity was greatly increased in cells treated with cisplatin alone. Pretreatment of these cells with the selective MEK inhibitor U0126 effectively reduced the level of cisplatin-induced apoptosis. These results imply that cisplatin-induced MEK/ERK activation appears to mediate apoptotic cell death, but that constitutively activated Akt1 and/or ERK pathway may mediate resistance to cisplatin in NSCLC cells. Taken together, our data demonstrate that down-regulation of Akt1 using RNAi enhances the chemosensitivity of NSCLC cells to cisplatin.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Immunoblotting , Lentivirus/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas/efeitos dos fármacos
16.
Cancer Lett ; 418: 10-19, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331412

RESUMO

The peroxisome proliferator-activated receptor (PPAR) γ, a subtype of PPARs, is a member of the nuclear receptor family. PPARγ and its ligands contribute to various types of diseases including cancer. Given that currently developed therapies against leukemia are not very effective or safe, PPARγ ligands have been shown to be a new class of compounds with the potential to treat hematologic malignancies, particularly leukemia. The capability of PPARγ ligands to induce apoptosis, inhibit proliferation, and promote differentiation of leukemia cells suggests it has significant potential as a drug against leukemia. However, the specific mechanisms and molecules involved are not well-understood, although a number of PPARγ ligands with anti-leukemic effects have been identified. This may explain why PPARγ ligands have not been widely evaluated in clinical trials. To fill the gaps in the lack of understanding of specific anti-leukemic processes of PPARγ ligands and further adapt these molecules as anti-leukemic agents, this review describes previous studies of the anti-leukemic effects of PPARγ ligands.


Assuntos
Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Leucemia/tratamento farmacológico , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Tiazolidinedionas/uso terapêutico , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Humanos , Leucemia/classificação , Leucemia/metabolismo , Ligantes , Modelos Biológicos , PPAR gama/metabolismo
17.
EBioMedicine ; 28: 261-273, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29366627

RESUMO

Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases owing to their immunosuppressive properties. In this study, we aimed to identify the effect of interferon (IFN)-γ priming on immunomodulation by MSCs and elucidate the possible mechanism underlying their properties for the clinical treatment of allogeneic conflicts. Infusion of MSCs primed with IFN-γ significantly reduced the symptoms of graft-versus-host disease (GVHD) in NOD-SCID mice, thereby increasing survival rate when compared with naïve MSC-infused mice. However, infusion of IFN-γ-primed MSCs in which indoleamine 2,3-dioxygenase (IDO) was downregulated did not elicit this effect. The IDO gene was expressed in MSCs via the IFN-γ-Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) pathway, and the infusion of IDO-over-expressing MSCs increased survival rate in an in vivo GVHD model, similar to infusion of IFN-γ-primed MSCs. These data indicate that IFN-γ production by activated T-cells is correlated with the induction of IDO expression in MSCs via the IFN-γ-JAK-STAT1 pathway, which in turn results in the suppression of T-cell proliferation. Our findings also suggest that cell therapy based on MSCs primed with IFN-γ can be used for the clinical treatment of allogeneic conflicts, including GVHD.


Assuntos
Terapia de Imunossupressão , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , Animais , Separação Celular , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Janus Quinases/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Fito-Hemaglutininas/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo
18.
Stem Cell Rev Rep ; 14(2): 286-293, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29273868

RESUMO

Human mesenchymal stem cells (MSCs) are known for their prostaglandin E2 (PGE2)-mediated immunosuppressive function but the precise molecular mechanisms underlying PGE2 biosynthesis during inflammation have not been completely elucidated. In this study, we have investigated the involvement of PGE2 pathway members in PGE2 production by bone marrow (BM)-MSCs in response to inflammatory stimuli, and their role in immunosuppression mediated by BM-MSCs. We found that IFN-γ and TNF-α increased cyclooxygenase (COX)-2 expression but not that of prostaglandin E synthase (PGES), or PGE2 production. On the other hand, the toll like receptor 3 (TLR3) stimulant poly(I:C) increased expression of both COX-2 and PGES, resulting in a significant increase in PGE2 levels. This effect was reversed upon COX-2 inhibition with indomethacin or PGES downregulation by siRNA. Reduced PGE2 levels decreased MSC's capacity to inhibit hPBMC proliferation. In addition, administration of MSCs with inhibited PGES expression into mice with graft-versus-host disease (GVHD) did not reduce mortality. In summary, the present study reveals that upregulation of PGES via TLR3 is critical for BM-MSCs-mediated immunosuppression by PGE2 secretion via the COX-2/PGE2 pathway. These results provide a basis for understanding the molecular mechanisms underlying the PGE2-mediated immunosuppressive properties of MSCs.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Prostaglandina-E Sintases/metabolismo , Receptor 3 Toll-Like/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/genética , Dinoprostona/metabolismo , Humanos , Terapia de Imunossupressão , Prostaglandina-E Sintases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like/genética
19.
Stem Cell Rev Rep ; 14(3): 451-460, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29594684

RESUMO

In this study, the effect of adipose tissue stem cells (ASCs) on the growth of acute lymphoblastic leukemia (ALL) cells was examined in an in vivo model. We established ALL cell lines expressing firefly luciferase (ALL/fLuc) by lentiviral infection that were injected intraperitoneally to NOD/SCID mice. The luciferase activities were significantly higher in mice co-injected with 105 ALL/fLuc cells and ASCs than in those injected with ALL/fLuc cells alone. Co-injection of 105 ALL/fLuc cells and ASCs in differing ratios into mice gradually increased the bioluminescence intensity in all groups, and mice co-injected with 1 or 2 × 106 ASCs showed higher bioluminescence intensity than those receiving lower numbers. Interestingly, in the mice injected with 105 or 107 ALL/fLuc cells alone, the formation of tumor masses was not observed for at least five weeks. Moreover, co-injection of 107 ALL/fLuc cells and 5 × 105 ASCs into mice increased the bioluminescence intensity in all groups, and showed significantly higher bioluminescence intensity compared to mice co-injected with human normal fibroblast HS68 cells. Overall, ASCs promote the growth of ALL cells in vivo, suggesting that ASCs negatively influence hematologic malignancy, which should be considered in developing cell therapy using ASCs.


Assuntos
Tecido Adiposo/citologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Humanos , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
20.
Biomed Rep ; 6(3): 300-306, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28451390

RESUMO

The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm2. After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox (Nanog), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog (c-Myc), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc, were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA