Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 39(4): 1595-607, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627433

RESUMO

BACKGROUND/AIMS: It is known that mesenchymal stem cells (MSCs) can have variable responses to hypoxic conditions and that hypoxia may specifically stimulate differentiation into osteogenic, chondrogenic, or adipogenic cells. Based on our previous study, we hypothesized that hypoxia may also induce MSC differentiation into cardiomyocytes and/or cells with comparable phenotypes. METHODS: The differences in the proteomes were specifically investigated in bone marrow-derived rat MSCs (BM-rMSCs) under normoxic and hypoxic conditions using 2-DE combined with a MALDI-TOF-MS analysis and western blot analysis. In addition, genetic and/or proteomic interactions were assessed using a String network analysis. RESULTS: Among the 35 markedly changed spots from a total of 393 matched spots, 24 were highly up-regulated and 11 were significantly down-regulated in hypoxic rMSCs based on a proteomic analysis. Although hypoxia failed to induce the direct differentiation of rMSCs into cardiomyocytes, several cardiomyocyte differentiation-related genes and proteins were significantly increased by hypoxic stress. CONCLUSION: We found that BM-rMSCs alter their expression of several cardiomyocyte differentiation-related genes and proteins under hypoxic conditions, and we examined the interactions between these genes and/or proteins, providing new insights for the applicability of MSCs preconditioned by hypoxic stimulation for use in cardiac diseases.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Proteoma/genética , Animais , Células da Medula Óssea/citologia , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , Cultura Primária de Células , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
2.
Cell Physiol Biochem ; 40(1-2): 400-410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27866198

RESUMO

BACKGROUND/AIMS: We previously showed that a hypoxic environment modulates the antiarrhythmic potential of mesenchymal stem cells. METHODS: To investigate the mechanism by which secreted proteins contribute to the pathogenesis of antiarrhythmic potential in mesenchymal stem cells, we used two-dimensional electrophoresis combined with MALDI-TOF-MS to perform a proteomic analysis to compare the paracrine media produced by normoxic and hypoxic cells. RESULTS: The proteomic analysis revealed that 66 protein spots out of a total of 231 matched spots indicated differential expression between the normoxic and hypoxic conditioned media of mesenchymal stem cells. Interestingly, two tropomyosin isoforms were dramatically increased in the hypoxic conditioned medium of mesenchymal stem cells. An increase in tropomyosin was confirmed using Western blot to analyze the conditioned media between normoxic and hypoxic cells. In a network analysis based on gene ontology (GO) Molecular Function by GeneMANIA analysis, most of the identified proteins were found to be involved in the regulation of heart processes. CONCLUSION: Our results show that hypoxia up-regulates tropomyosin and other secreted proteins which suggests that tropomyosin may be involved in regulating proarrhythmic and antiarrhythmic functions.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Proteômica/métodos , Animais , Hipóxia Celular , Eletroforese em Gel Bidimensional , Redes Reguladoras de Genes , Células-Tronco Mesenquimais/efeitos dos fármacos , Miocárdio/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Coloração pela Prata , Tropomiosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA