Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microcirculation ; 28(7): e12720, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152668

RESUMO

OBJECTIVES: The ability to regulate skeletal blood flow is critical for the maintenance of bone. The myogenic response is essential for regulating tissue blood flow. Myogenic responsiveness in bone marrow arterioles has not yet been determined. Furthermore, the literature is disparate regarding intramedullary pressures (IMP) within bone. The purposes of this study were to (1) determine whether bone marrow arterioles have myogenic activity and (2) assess if the autoregulatory zone corresponds with IMP. Also, this study provides detailed methodology on dissecting and isolating bone marrow arterioles for functional assessment. METHODS: Experiment 1: Femoral shafts of female Long Evans rats were catheterized to assess in vivo IMP. Experiment 2: Bone marrow arterioles from female Long Evans rats were cannulated. Active and passive myogenic responses were determined. RESULTS: In vivo intramedullary pressure averaged 32 ± 3 mmHg, intramedullary pulse pressure averaged 5.28 ± 0.03 mmHg, and the mean maximal diameter and wall thickness of the bone marrow arterioles were 96 ± 7 µm and 18 ± 2 µm, respectively. An active myogenic response was observed and differed (p < .001) from the passive curve. CONCLUSION: Bone marrow arterioles have myogenic responsiveness and the autoregulatory zone corresponded with the range of IMP (15-51 mmHg) within the femoral diaphysis of conscious animals.


Assuntos
Medula Óssea , Vasoconstrição , Animais , Arteríolas/fisiologia , Pressão Sanguínea , Feminino , Homeostase , Músculo Liso Vascular/fisiologia , Ratos , Ratos Long-Evans , Vasoconstrição/fisiologia
2.
Exp Physiol ; 105(7): 1159-1171, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32306445

RESUMO

NEW FINDINGS: What is the central question of this study? We sought to assess the effects of intermittent parathyroid hormone (1-34) administration on bone angiogenesis, the redistribution of bone marrow blood vessels, and matrix metalloproteinase 9 as a function of advancing age in mice. What is the main finding and its importance? Short-term (i.e. 10 days) intermittent parathyroid hormone (1-34) administration increased the number of small (≤29-µm-diameter) bone marrow blood vessels and augmented matrix metalloproteinase 9. These changes occurred before alterations in trabecular bone. Given the rapid response in bone angiogenesis, this investigation highlights the impact of intermittent parathyroid hormone (1-34) administration on the bone vascular network. ABSTRACT: Intermittent parathyroid hormone (PTH) administration augments bone, stimulates the production of matrix metalloproteinase 9 (Mmp9) and relocates bone marrow blood vessels closer to osteoid seams. Discrepancies exist, however, regarding bone angiogenesis. Given that Mmp9 participates in cellular homing and migration, it might aid in blood vessel relocation. We examined the influence of short-term intermittent PTH administration on angiogenesis, Mmp9 secretion and the distance between blood vessels and bone. Mature (6- to 8-month-old) and middle-aged (10- to 12-month-old) male and female C57BL/6 mice were divided into three groups: control (CON), and 5 (5dPTH) and 10 days (10dPTH) of intermittent PTH administration. Mice were given PBS (50 µl day-1 ) or PTH(1-34) (43 µg kg-1  day-1 ). Frontal sections (5 µm thick) of the right distal femoral metaphysis were triple-immunolabelled to identify endothelial cells (anti-CD31), vascular smooth muscle cells (anti-αSMA) and Mmp9 (anti-Mmp9). Vascular density, Mmp9 density, area and localization, and blood vessel distance from bone were analysed. Blood vessels were analysed according to diameter: 1-29, 30-100 and 101-200 µm. Trabecular bone microarchitecture and bone static and dynamic properties were assessed. No main effects of age were observed for any variable. The density of CD31-labelled blood vessels 1-29 and 30-100 µm in diameter was higher (P < 0.05) and tended (P = 0.055) to be higher, respectively, in 10dPTH versus 5dPTH and CON. Mmp9 was augmented (P < 0.05) in 10dPTH versus the other groups. Mmp9 was closer (P < 0.05) to blood vessels 1-29 µm in diameter and furthest (P < 0.05) from bone. In conclusion, bone angiogenesis occurred by day 10 of intermittent PTH administration, coinciding with augmented Mmp9 secretion near the smallest blood vessels (1-29 µm in diameter).


Assuntos
Fêmur/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Fisiológica , Hormônio Paratireóideo/farmacologia , Fatores Etários , Animais , Células Endoteliais , Feminino , Fêmur/irrigação sanguínea , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso , Hormônio Paratireóideo/administração & dosagem
3.
Phys Chem Chem Phys ; 22(14): 7597-7605, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32226986

RESUMO

The long stagnation of the photo-conversion efficiency of kesterites below 13% is a source of frustration in the scientific community. In this study, we investigated the effects of sodium on the passivation of grain boundaries and defects in Cu2ZnSnSe4 (CZTSe) grown on a soda-lime glass (SLG) and borosilicate (BS) glass. Because BS glass does not inherently contain sodium, we placed a thin layer of NaF between CZTSe and Mo. The composition of the samples is Cu-poor and Zn-rich. The distribution of sodium and its contributions to phase formation and defects were examined by cross-sectional energy-dispersive X-ray profiling, Raman scattering spectroscopy and imaging, surface potential and photoluminescence. From the experimental results, it can be strongly claimed that sodium ions segregate predominantly near the grain boundaries and reduce CuZn-related defects. These local surface imaging analyses provided the exact locations of the secondary phases. In particular, the photo-assisted scanning probe method enabled us to observe the changes in the optoelectrical properties of the thin films and the carrier behavior within the materials. Further studies with distinct alkali ions and optimal processing conditions will pave a way to improve the performance of kesterite solar cells.

4.
Nano Lett ; 19(12): 8644-8652, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31671269

RESUMO

Controlled phase conversion in polymorphic transition metal dichalcogenides (TMDs) provides a new synthetic route for realizing tunable nanomaterials. Most conversion methods from the stable 2H to metastable 1T phase are limited to kinetically slow cation insertion into atomically thin layered TMDs for charge transfer from intercalated ions. Here, we report that anion extraction by the selective reaction between carbon monoxide (CO) and chalcogen atoms enables predictive and scalable TMD polymorph control. Sulfur vacancy, induced by anion extraction, is a key factor in molybdenum disulfide (MoS2) polymorph conversion without cation insertion. Thermodynamic MoS2-CO-CO2 ternary phase diagram offers a processing window for efficient sulfur vacancy formation with precisely controlled MoS2 structures from single layer to multilayer. To utilize our efficient phase conversion, we synthesize vertically stacked 1T-MoS2 layers in carbon nanofibers, which exhibit highly efficient hydrogen evolution reaction catalytic activity. Anion extraction induces the polymorph conversion of tungsten disulfide (WS2) from 2H to 1T. This reveals that our method can be utilized as a general polymorph control platform. The versatility of the gas-solid reaction-based polymorphic control will enable the engineering of metastable phases in 2D TMDs for further applications.

5.
Microcirculation ; 26(8): e12550, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31021022

RESUMO

OBJECTIVE: Assess the link between bone marrow blood vessel ossification, Tb. and cortical bone, and hematological parameters across the lifespan in rats. METHODS: Right femora and whole blood samples were taken from male Fischer-344 rats at 1, 6, 12, 18 and 24 months. Femora were scanned by micro-computed tomography (MicroCT) to determine bone marrow blood vessel ossification (ie, ossified vessel volume [OsVV], ossified vessel thickness (OsV.Th), ossified vessel density (OsV density), and structural model index [SMI]). Bone microarchitecture (ie, bone volume [BV/TV], trabecular thickness, trabecular number, and trabecular separation), density and SMI, and cortical bone parameters (ie, cortical shell thickness, porosity, and density) were also determined by MicroCT. Complete blood counts with differentials were conducted. RESULTS: Ossified vessel volume increased throughout the lifespan, coinciding with reduced trabecular BV/TV and cortical shell thickness at 24 months. Many of the hematological parameters were unchanged (ie, white blood cells, lymphocyte number) or increased (monocyte number, percent monocyte, granulocyte number, percent granulocyte, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration, red blood cell distribution width, platelet, mean platelet volume) with advancing age; however, red blood cells (RBC) and percent lymphocytes (LY%) were reduced at 24 months. In addition, OsV density was similar to trabecular bone density. CONCLUSIONS: Declines in trabecular BV/TV, cortical shell thickness, RBC, and LY% with advanced age coincided with augmented ossification of bone marrow blood vessels.


Assuntos
Medula Óssea , Osso Esponjoso , Ossificação Heterotópica , Calcificação Vascular , Animais , Densidade Óssea , Medula Óssea/irrigação sanguínea , Medula Óssea/diagnóstico por imagem , Medula Óssea/metabolismo , Osso Esponjoso/irrigação sanguínea , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/metabolismo , Contagem de Eritrócitos , Masculino , Ossificação Heterotópica/sangue , Ossificação Heterotópica/diagnóstico por imagem , Ratos , Ratos Endogâmicos F344 , Calcificação Vascular/sangue , Calcificação Vascular/diagnóstico por imagem , Microtomografia por Raio-X
6.
Microcirculation ; 26(8): e12579, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246334

RESUMO

OBJECTIVE: To characterize ossified bone marrow blood vessels and confirm the presence of ossified particles (OSP) in humans and rodents. METHODS: Human bone marrow blood vessels were processed for scanning and transmission electron microscopy. Whole blood samples were collected from younger (26-39 years; n = 6) and older (55-63 years; n = 6) volunteers and male Fischer-344 rats (1 month, n = 7; 6 months, n = 7; 12 months, n = 7; 18-months, n = 6; 24 months, n = 8). OSP in the whole blood samples were sorted and imaged with microscopy to determine diameter, circularity, and solidity. Additionally, the chemical composition of OSP was determined via elemental analysis. RESULTS: SEM revealed two types of ossified bone marrow blood vessels: that is, "transitioning" and "ossified." OSP were adhered to the surface of transitioning vessels and theoretically gain access to and circulate within the blood. The majority of OSP were ≤15 µm in diameter, but many were of sufficient size to serve as emboli (ie, >15 µm).OSP were predominately oblong in shape and several had jagged tips and edges. CONCLUSIONS: We introduce a novel, bone-like blood particle that may be diagnostic of bone marrow blood vessel ossification. Further, OSP may associate with several disease states (eg, atherosclerosis).


Assuntos
Doenças da Medula Óssea , Medula Óssea , Vesículas Extracelulares , Ossificação Heterotópica , Calcificação Vascular , Adulto , Idoso , Animais , Medula Óssea/irrigação sanguínea , Medula Óssea/ultraestrutura , Doenças da Medula Óssea/sangue , Doenças da Medula Óssea/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ossificação Heterotópica/sangue , Ossificação Heterotópica/patologia , Ratos , Ratos Endogâmicos F344 , Calcificação Vascular/sangue , Calcificação Vascular/patologia
7.
Clin Exp Hypertens ; 41(7): 675-681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30388905

RESUMO

Objective: Menopause is associated with a progressive impairment of vascular function and muscular strength in women. Accordingly, the purpose of this study was to determine if Taekwondo training could improve blood catecholamine levels, arterial stiffness, blood pressure (BP) and skeletal muscle strength in postmenopausal women with stage-2 hypertension. Methods: 20 postmenopausal women (70 ± 4 years old) with stage-2 hypertension were randomly assigned to a 1) Taekwondo training (TT; n = 10) or 2) Control (CON; n = 10) group. Taekwondo training was performed for 60 minutes/day, 3 days/week for 12-weeks. Results: There were significant (P < 0.05) group by time interactions for resting epinephrine (EP) and norepinephrine (NE) levels, with EP decreasing in the TT group and NE increasing in the CON group. Additionally, brachial-ankle pulse wave velocity, resting heart rate, and BP were significantly decreased, while hand grip and leg strength were significantly increased in the TT group compared to CON group. Conclusion: These results suggest that Taekwondo training can be a novel and beneficial mode of exercise for improving cardiovascular function and muscular strength in this population. Abbreviations: TT: Taekwondo training group; CON: control group; EP: epinephrine; NE: norepinephrine; ANS: autonomic nervous system; SNS: sympathetic nervous system; baPWV: brachial-ankle pulse wave velocity.


Assuntos
Epinefrina/sangue , Hipertensão/fisiopatologia , Artes Marciais/fisiologia , Norepinefrina/sangue , Pós-Menopausa/fisiologia , Rigidez Vascular , Idoso , Pressão Sanguínea , Feminino , Força da Mão , Frequência Cardíaca , Humanos , Músculo Esquelético/fisiologia , Análise de Onda de Pulso , Descanso/fisiologia
8.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795517

RESUMO

Noise, which is commonly generated in low-light environments or by low-performance cameras, is a major cause of the degradation of compression efficiency. In previous studies that attempted to combine a denoise algorithm and a video encoder, denoising was used independently of the code for pre-processing or post-processing. However, this process must be tightly coupled with encoding because noise affects the compression efficiency greatly. In addition, this represents a major opportunity to reduce the computational complexity, because the encoding process and a denoise algorithm have many similarities. In this paper, a simple, add-on denoising scheme is proposed through a combination of high-efficiency video coding (HEVC) and block matching three-dimensional collaborative filtering (BM3D) algorithms. It is known that BM3D has excellent denoise performance but that it is limited in its use due to its high computational complexity. This paper employs motion estimation in HEVC to replace the block matching of BM3D so that most of the time-consuming functions are shared. To overcome the challenging algorithmic differences, the hierarchical structure in HEVC is uniquely utilized. As a result, the computational complexity is drastically reduced while the competitive performance capabilities in terms of coding efficiency and denoising quality are maintained.

9.
Int J Mol Sci ; 19(4)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621141

RESUMO

Chronic heart failure (CHF) is a major contributor to cardiovascular disease and is the leading cause of hospitalization for those over the age of 65, which is estimated to account for close to seventy billion dollars in healthcare costs by 2030 in the US alone. The successful therapies for preventing and reversing CHF progression are urgently required. One strategy under active investigation is to restore dysregulated myocardial calcium (Ca2+), a hallmark of CHF. It is well established that intracellular Ca2+ concentrations are tightly regulated to control efficient myocardial systolic contraction and diastolic relaxation. Among the many cell surface proteins and intracellular organelles that act as the warp and woof of the regulatory network controlling intracellular Ca2+ signals in cardiomyocytes, sarco/endoplasmic reticulum Ca2+ ATPase type 2a (SERCA2a) undoubtedly plays a central role. SERCA2a is responsible for sequestrating cytosolic Ca2+ back into the sarcoplasmic reticulum during diastole, allowing for efficient uncoupling of actin-myosin and subsequent ventricular relaxation. Accumulating evidence has demonstrated that the expression of SERCA2a is downregulated in CHF, which subsequently contributes to severe systolic and diastolic dysfunction. Therefore, restoring SERCA2a expression and improving cardiomyocyte Ca2+ handling provides an excellent alternative to currently used transplantation and mechanical assist devices in the treatment of CHF. Indeed, advancements in safe and effective gene delivery techniques have led to the emergence of SERCA2a gene therapy as a potential therapeutic choice for CHF patients. This mini-review will succinctly detail the progression of SERCA2a gene therapy from its inception in plasmid and animal models, to its clinical trials in CHF patients, highlighting potential avenues for future work along the way.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Dependovirus/genética , Terapia Genética/métodos , Humanos
10.
Int J Mol Sci ; 18(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598390

RESUMO

It was reported that substance P had beneficial effects in the healing of acute tendon injury. However, the relationship between substance P and degenerative tendinopathy development remains unclear. The purpose of this study was to determine the role of substance P in the pathogenesis of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes were cultured individually. The expression levels of genes associated with tendinopathy were compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1, MMP1, COX2, SCX, ACTA2, and substance P gene expression compared to healthy tenocytes. Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the tendinopathy tenocytes. These differences between the two groups were also determined by Western blot. Additionally, cells with substance P had the tendinopathy change morphologically although cellular proliferation was significantly higher compared to that of the control group. In conclusion, substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type 3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future therapeutic target for treatment.


Assuntos
Substância P/metabolismo , Tendinopatia/etiologia , Tendinopatia/metabolismo , Biomarcadores , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética , Tendinopatia/patologia , Tendões/citologia , Tendões/metabolismo , Tendões/patologia
11.
Nanotechnology ; 27(11): 115402, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26878139

RESUMO

Studies aiming to significantly improve thermal properties, such as figure-of-merit, of silicon nanowires (SiNW) have focused on diameter reduction and surface or interface roughness control. However, the mechanism underlying thermal conductivity enhancement of roughness controlled NWs remains unclear. Here, we report a significant influence of stacking faults (SFs) on the lateral thermal conductivity of a single SiNW, using a combination of newly developed in situ spatially-resolved thermal resistance experiments and high-resolution transmission electron microscopy measurements. We used as-grown SiNWs tapered along the growth direction with progressively lower roughness and SFs density. The results clearly confirmed that both surface roughness and twins or SFs densities suppress the thermal conductivity of an individual SiNW. The results and measurement techniques presented here hold great potential for inspecting minute changes in thermal resistance along an individual SiNW, caused by induced SFs on the nanostructure, and for improving one-dimensional nanowire-based thermoelectric device performance.

12.
Biosci Biotechnol Biochem ; 79(8): 1378-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25744534

RESUMO

In this study, dual-cylindrical anaerobic digesters were designed and built on the pilot plant scale for the improvement of anaerobic digestion efficiency. The removal efficiency of organics, biogas productivity, yield, and microbial communities was evaluated as performance parameters of the digester. During the stable operational period in the continuous mode, the removal efficiencies of chemical oxygen demand and total solids were 74.1 and 65.1%, respectively. Biogas productivities of 63.9 m(3)/m(3)-FWW and 1.3 m(3)/kg-VSremoved were measured. The hydrogenotrophic methanogen orders, Methanomicrobiales and Methanobacteriales, were predominant over the aceticlastic methanogen order, Methanosarcinaceae, probably due to the tolerance of the hydrogenotrophs to environmental perturbation in the field and their faster growth rate compared with that of the aceticlastics.


Assuntos
Biodegradação Ambiental , Methanobacteriales/metabolismo , Methanomicrobiales/metabolismo , Águas Residuárias , Anaerobiose , Biocombustíveis , Reatores Biológicos , Alimentos , Humanos , Metano/metabolismo , Esgotos
13.
Planta Med ; 81(4): 286-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25719941

RESUMO

The adverse effects of anticancer drugs can prompt patients to end their treatment despite the efficacy. Cisplatin is a platinum-based molecule widely used to treat various forms of cancer, but frequent and long-term use of cisplatin is limited due to severe nephrotoxicity. In the present study, we investigated the protective effect and mechanism of tetrahydrocurcumin on cisplatin-induced kidney damage, oxidative stress, and inflammation to evaluate its possible use in renal damage. Cisplatin-induced LLC-PK1 renal cell damage was significantly reduced by tetrahydrocurcumin treatment. Additionally, the protective effect of tetrahydrocurcumin on cisplatin-induced oxidative renal damage was investigated in rats. Tetrahydrocurcumin was orally administered every day at a dose of 80 mg/kg body weight for ten days, and a single dose of cisplatin was administered intraperitoneally (7.5 mg/kg body weight) in 0.9 % saline on day four. The creatinine clearance levels, which were markers of renal dysfunction, in cisplatin-treated rats were recovered nearly back to normal levels after administration of tetrahydrocurcumin. Moreover, tetrahydrocurcumin exhibited protective effects against cisplatin-induced oxidative renal damage in rats by inhibiting cyclooxygenase-2 and caspase-3 activation. These results collectively provide therapeutic evidence that tetrahydrocurcumin ameliorates renal damage by regulating inflammation and apoptosis.


Assuntos
Cisplatino/efeitos adversos , Curcuma/química , Curcumina/análogos & derivados , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biomarcadores/metabolismo , Caspase 3/metabolismo , Cisplatino/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Técnicas In Vitro , Rim/metabolismo , Nefropatias/metabolismo , Células LLC-PK1 , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Suínos
14.
Environ Technol ; 35(13-16): 1702-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24956761

RESUMO

Efficient sludge management is among the most challenging issues in wastewater treatment today, and anaerobic digestion is regarded as a viable solution. Mild-temperature H202 oxidation was examined for enhanced solubilization and biogas production of waste activated sludge (WAS). The effects of pretreatment factors (i.e. temperature and H202 concentration) on the degree of WAS disintegration (DD) and biogas yield (BY) were assessed by response surface analysis within the design space of 60-90 degrees C and 0-200mM H202. Significant sludge disintegration (up to 23.0% DD) and visibly enhanced BY (up to 26.9%) were shown in the pretreatment trials. Two response surface models to describe how DD and BY respond to changes in the pretreatment conditions were successfully constructed (R2 > 0.95, p < 0.05). The models showed totally different response surface shapes, indicating the DD and BY were influenced by pretreatment conditions in very different ways. DD was dominantly affected by temperature and showed higher model responses at the high-temperature region, while the BY response peaked in the low-temperature and mid-level H2O2 region. This observation implies that the enhanced solubilization of WAS was not directly translated into an increase in biogas production. Our results showed that WAS can be efficiently disintegrated by H202 oxidation under mild-temperature conditions for enhanced anaerobic digestibility. Within the explored region of pretreatment conditions, the maximum BY was estimated to be 82.1 mL/gCODadded (32.8% greater than the untreated control) at (60.0 degrees C, 74.2 mM H2O2).


Assuntos
Peróxido de Hidrogênio/química , Esgotos/química , Anaerobiose , Biocombustíveis , Modelos Estatísticos , Oxirredução , Temperatura
15.
Adv Mater ; 36(21): e2310671, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279779

RESUMO

Zinc pnictides, particularly Zn3As2, hold significant promise for optoelectronic applications owing to their intrinsic p-type behavior and appropriate bandgaps. However, despite the outstanding properties of colloidal Zn3As2 nanocrystals, research in this area is lacking because of the absence of suitable precursors, occurrence of surface oxidation, and intricacy of the crystal structures. In this study, a novel and facile solution-based synthetic approach is presented for obtaining highly crystalline p-type Zn3As2 nanocrystals with accurate stoichiometry. By carefully controlling the feed ratio and reaction temperature, colloidal Zn3As2 nanocrystals are successfully obtained. Moreover, the mechanism underlying the conversion of As precursors in the initial phases of Zn3As2 synthesis is elucidated. Furthermore, these nanocrystals are employed as active layers in field-effect transistors that exhibit inherent p-type characteristics with native surface ligands. To enhance the charge transport properties, a dual passivation strategy is introduced via phase-transfer ligand exchange, leading to enhanced hole mobilities as high as 0.089 cm2 V-1 s-1. This study not only contributes to the advancement of nanocrystal synthesis, but also opens up new possibilities for previously underexplored p-type nanocrystal research.

16.
Nanotechnology ; 24(18): 185401, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575254

RESUMO

We have successfully investigated the thermal conductivity (κ) of single-crystalline bismuth nanowires (BiNWs) with [110] growth direction, via a straightforward and powerful four-point-probe 3-ω technique in the temperature range 10-280 K. The BiNWs, which are well known as the most effective material for thermoelectric (TE) device applications, were synthesized by compressive thermal stress on a SiO2/Si substrate at 250-270 °C for 10 h. To understand the thermal transport mechanism of BiNWs, we present three kinds of experimental technique as follows, (i) a manipulation of a single BiNW by an Omni-probe in a focused ion beam (FIB), (ii) a suspended bridge structure integrating a four-point-probe chip by micro-fabrication to minimize the thermal loss to the substrate, and (iii) a simple 3-ω technique system setup. We found that the thermal transport of BiNWs is highly affected by boundary scattering of both phonons and electrons as the dominant heat carriers. The thermal conductivity of a single BiNW (d ~ 123 nm) was estimated to be ~2.9 W m(-1) K(-1) at 280 K, implying lower values compared to the thermal conductivity of the bulk (~11 W m(-1) K(-1) at 280 K). It was noted that this reduction in the thermal conductivity of the BiNWs could be due to strongly enhanced phonon-boundary scattering at the surface of the BiNWs. Furthermore, we present temperature-dependent (10-280 K) thermal conductivity of the BiNWs using the 3-ω technique.

17.
Nanotechnology ; 24(49): 495202, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24231523

RESUMO

We report on a systematic study of the thermal transport characteristics of both as-grown zinc oxide and gallium nitride nanowires (NWs) via the four-point-probe 3-ω method in the temperature range 130-300 K. Both as-grown NWs were synthesized by a vapor-liquid-solid growth mechanism, and show clear n-type semiconducting behavior without any defects, which enables both the NWs to be promising candidates for thermoelectric materials. To measure the thermal conductivities of both NWs with lower heat loss and measurement errors, the suspended structures were formed by a combination of an e-beam lithography process and a random dispersion method. The measured thermal conductivities of both NWs are greatly reduced compared to their bulk materials due to the enhanced phonon scattering via the size effect and dopants (impurities). Furthermore, we observed that the Umklapp peaks of both NWs are shifted to a higher temperature than those of their bulk counterparts, indicating that phonon-boundary scattering dominates over other phonon scattering due to the size effect.


Assuntos
Nanofios/química , Semicondutores , Eletrodos , Desenho de Equipamento , Gálio/química , Nanotecnologia , Fônons , Temperatura , Óxido de Zinco/química
18.
J Ind Microbiol Biotechnol ; 40(9): 1015-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832436

RESUMO

A real-time quantitative polymerase chain reaction (QPCR) was used to evaluate biokinetic coefficients of Nitrosomonas nitrosa and N. cryotolerans clusters growing simultaneously in a batch mode of ammonia oxidation. The mathematical models based on Monod equation were employed to describe the competitive relationship between these clusters and were fitted to experimental data to obtain biokinetic values. The maximum growth rates (µ(m)), half-saturation coefficients (K(S)), microbial yields (Y) and decay coefficients (k(d)) of N. nitrosa and N. cryotolerans were 1.77 and 1.21 day(-1), 23.25 and 23.06 mg N·L(-1), 16 × 10(8) and 1 × 10(8) copies·mg N(-1), 0.26 and 0.20 day(-1), respectively. The estimated coefficients were applied for modeling continuous operations at various hydraulic retention times (HRTs) with an influent ammonia concentration of 300 mg N·L(-1). Modeling results revealed that ammonia oxidation efficiencies were achieved 55-98 % at 0.8-10 days HRTs and that the system was predicted to be washed out at HRT of 0.7 days. Overall, use of QPCR for estimating biokinetic coefficients of the two AOB cluster growing simultaneously by use of ammonia were successful. This idea may open a new direction towards biokinetics of ammonia oxidation in which respirometry tests are usually employed.


Assuntos
Amônia/metabolismo , Modelos Biológicos , Nitrosomonas/crescimento & desenvolvimento , Nitrosomonas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Resíduos Industriais , Cinética , Nitrosomonas/genética , Oxirredução , RNA Ribossômico 16S/genética , Fatores de Tempo , Incerteza , Águas Residuárias/química , Águas Residuárias/microbiologia
19.
J Bone Metab ; 30(2): 149-165, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37449348

RESUMO

BACKGROUND: The effectiveness of exercise for improving osteoporosis and fall prevention in patients diagnosed with osteoporosis or osteopenia has not been fully summarized. The Korean Society for Bone and Mineral Research and the Korean Society of Exercise Physiology has developed exercise guidelines for patients with osteoporosis or osteopenia and provide evidence-based recommendations. METHODS: A systematic review identified randomized controlled trials (RCT) assessing the effect of resistance, impact, balance, aerobic training, and physical activity in osteoporosis and osteopenia on bone quality, physical performance, quality of life, and fall prevention. PubMed, Embase, KoreaMed, and RISS were searched from January 2000 to August 2022. Ten key questions were established to review the evidence and formulate recommendations. RESULTS: The 50 RCTs reported that even with osteoporosis and osteopenia, resistance and impact training consistently maximized bone strength, improved body strength and balance, and eventually reduced fall incidences. Resistance exercise combining 3 to 10 types of free weight and mechanical exercise of major muscle groups performed with an intensity of 50% to 85% 1-repetition maximum, 5 to 12 repetitions/set, 2 to 3 days/week, for 3 to 12 months is recommended. Impact exercises such as jumping chin-ups with drop landings and jump rope performed 50 jumps/session for at least 6 months with 3 or more days/week are recommended. CONCLUSIONS: A multi-component exercise mainly comprised of resistance and impact exercise seems to be an effective strategy to attenuate the risk factors of osteoporosis and osteopenia. The integration of exercise guidelines and individualized exercise plans has significant potential to reduce the morbidity and mortality of osteoporosis.

20.
Sci Transl Med ; 15(727): eade4619, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117901

RESUMO

Peripheral neurons terminate at the surface of tendons partly to relay nociceptive pain signals; however, the role of peripheral nerves in tendon injury and repair remains unclear. Here, we show that after Achilles tendon injury in mice, there is new nerve growth near tendon cells that express nerve growth factor (NGF). Conditional deletion of the Ngf gene in either myeloid or mesenchymal mouse cells limited both innervation and tendon repair. Similarly, inhibition of the NGF receptor tropomyosin receptor kinase A (TrkA) abrogated tendon healing in mouse tendon injury. Sural nerve transection blocked the postinjury increase in tendon sensory innervation and the expansion of tendon sheath progenitor cells (TSPCs) expressing tubulin polymerization promoting protein family member 3. Single cell and spatial transcriptomics revealed that disruption of sensory innervation resulted in dysregulated inflammatory signaling and transforming growth factor-ß (TGFß) signaling in injured mouse tendon. Culture of mouse TSPCs with conditioned medium from dorsal root ganglia neuron further supported a role for neuronal mediators and TGFß signaling in TSPC proliferation. Transcriptomic and histologic analyses of injured human tendon biopsy samples supported a role for innervation and TGFß signaling in human tendon regeneration. Last, treating mice after tendon injury systemically with a small-molecule partial agonist of TrkA increased neurovascular response, TGFß signaling, TSPC expansion, and tendon tissue repair. Although further studies should investigate the potential effects of denervation on mechanical loading of tendon, our results suggest that peripheral innervation is critical for the regenerative response after acute tendon injury.


Assuntos
Fator de Crescimento Neural , Traumatismos dos Tendões , Animais , Humanos , Camundongos , Proliferação de Células , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Células-Tronco , Tendões/metabolismo , Fator de Crescimento Transformador beta , Receptor trkA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA