Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain Struct Funct ; 224(9): 3321-3338, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31679085

RESUMO

In both Parkinson's disease (PD) patients and MPTP-treated non-human primates, there is a profound neuronal degeneration of the intralaminar centromedian/parafascicular (CM/Pf) thalamic complex. Although this thalamic pathology has long been established in PD (and other neurodegenerative disorders), the impact of CM/Pf cell loss on the integrity of the thalamo-striatal glutamatergic system and its regulatory functions upon striatal neurons remain unknown. In the striatum, cholinergic interneurons (ChIs) are important constituents of the striatal microcircuitry and represent one of the main targets of CM/Pf-striatal projections. Using light and electron microscopy approaches, we have analyzed the potential impact of CM/Pf neuronal loss on the anatomy of the synaptic connections between thalamic terminals (vGluT2-positive) and ChIs neurons in the striatum of parkinsonian monkeys treated chronically with MPTP. The following conclusions can be drawn from our observations: (1) as reported in PD patients, and in our previous monkey study, CM/Pf neurons undergo profound degeneration in monkeys chronically treated with low doses of MPTP. (2) In the caudate (head and body) nucleus of parkinsonian monkeys, there is an increased density of ChIs. (3) Despite the robust loss of CM/Pf neurons, no significant change was found in the density of thalamostriatal (vGluT2-positive) terminals, and in the prevalence of vGluT2-positive terminals in contact with ChIs in parkinsonian monkeys. These findings provide new information about the state of thalamic innervation of the striatum in parkinsonian monkeys with CM/Pf degeneration, and bring up an additional level of intricacy to the consequences of thalamic pathology upon the functional microcircuitry of the thalamostriatal system in parkinsonism. Future studies are needed to assess the importance of CM/Pf neuronal loss, and its potential consequences on the neuroplastic changes induced in the synaptic organization of the thalamostriatal system, in the development of early cognitive impairments in PD.


Assuntos
Núcleo Caudado/patologia , Neurônios Colinérgicos/patologia , Ácido Glutâmico , Núcleos Intralaminares do Tálamo/patologia , Neurônios/patologia , Transtornos Parkinsonianos/patologia , Putamen/patologia , Animais , Núcleo Caudado/ultraestrutura , Neurônios Colinérgicos/ultraestrutura , Feminino , Interneurônios/patologia , Interneurônios/ultraestrutura , Núcleos Intralaminares do Tálamo/ultraestrutura , Macaca mulatta , Masculino , Vias Neurais/patologia , Vias Neurais/ultraestrutura , Neurônios/ultraestrutura , Putamen/ultraestrutura , Sinapses/patologia , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
2.
PLoS One ; 12(11): e0187684, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117236

RESUMO

We recently demonstrated the effectiveness of blocking CD49d with anti-functional antibodies or small molecule inhibitors as a rational targeted approach to the treatment of acute leukemia in combination with chemotherapy. Antisense oligonucleotide promises to be no less specific than antibodies and inhibitors, but more interesting for pharmacokinetics and pharmacodynamics. We addressed this using the published CD49d antisense drug ATL1102. In vitro, we incubated/nucleofected the ALL cell line Kasumi-2 with ATL1102. In vivo, immunodeficient hosts were engrafted with primary ALL cells and treated with ATL1102. Changes in expression of CD49d mRNA and CD49d protein, and of cooperating gene products, including ß1 integrin and CXCR4, as well as survival in the mouse experiments were quantified. We observed dose-dependent down-regulation of CD49d mRNA and protein levels and its partner integrin ß1 cell surface protein level and, up-regulation of CXCR4 surface expression. The suppression was more pronounced after nucleofection than after incubation, where down-regulation was significant only at the higher doses. In vivo effects of ATL1102 were not sufficient to translate into "clinical" benefit in the leukemia model. In summary, antisense oligonucleotides are successful tools for specifically modulating gene expression but sufficient delivery to down-regulate CD49d in vivo may be difficult to achieve.


Assuntos
Regulação Neoplásica da Expressão Gênica , Integrina alfa4/antagonistas & inibidores , Oligonucleotídeos Antissenso/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Animais , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Humanos , Injeções Intravenosas , Injeções Subcutâneas , Integrina alfa4/genética , Integrina alfa4/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Oligonucleotídeos Antissenso/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancers (Basel) ; 9(9)2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28891959

RESUMO

The quest continues for targeted therapies to reduce the morbidity of chemotherapy and to improve the response of resistant leukemia. Adhesion of acute lymphoblastic leukemia (ALL) cells to bone marrow stromal cells triggers intracellular signals that promote cell-adhesion-mediated drug resistance (CAM-DR). Idelalisib, an U.S. Food and Drug Administration (FDA)-approved PI3Kδ-specific inhibitor has been shown to be effective in CLL in down-regulating p-Akt and prolonging survival in combination with Rituximab; herein we explore the possibility of its use in B ALL and probe the mechanism of action. Primary B ALL in contact with OP9 stromal cells showed increased p-Aktser473. Idelalisib decreased p-Akt in patient samples of ALL with diverse genetic lesions. Addition of idelalisib to vincristine inhibited proliferation when compared to vincristine monotherapy in a subset of samples tested. Idelalisib inhibited ALL migration to SDF-1α in vitro and blocked homing of ALL cells to the bone marrow in vivo. This report tests PI3Kδ inhibitors in a more diverse group of ALL than has been previously reported and is the first published report of idelalisib inhibiting homing of ALL cells to bone marrow. Our data support further pre-clinical evaluation of idelalisib for the therapy of B ALL.

4.
Int J Radiat Biol ; 92(12): 819-822, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27622834

RESUMO

PURPOSE: To clarify which DNA double-strand break repair pathway, non-homologous end-joining (NHEJ), homologous recombination repair (HRR) or both, plays a key role in potentially lethal damage repair (PLDR). METHODS AND MATERIALS: Combining published data and our new potentially lethal damage repair (PLDR) data, we explain whether similar to sublethal damage repair (SLDR), PLDR also mainly depends on NHEJ versus HRR. The PLDR data used the same cell lines: wild type, HRR or NHEJ-deficient fibroblast cells, as those SLDR data published by our laboratory previously. The PLDR condition that we used was as commonly described by many other groups: the cells were collected immediately or overnight post ionizing radiation for colony formation after cultured to a plateau phase with a low concentration of serum medium. RESULTS: Enough data from other groups and our lab showed that wild type or HRR-deficient cells had efficient PLDR, but NHEJ deficient cells did not. CONCLUSION: NHEJ contributes more to PLDR than HRR in mammalian cells, which is similar to SLDR. Since both SLDR and PLDR are relevant to clinical tumor status while undergoing radiotherapy, such clarification may benefit radiotherapy in the near future.


Assuntos
Ciclo Celular/efeitos da radiação , Dano ao DNA/genética , Reparo do DNA/genética , DNA/fisiologia , DNA/efeitos da radiação , Redes e Vias Metabólicas/genética , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos da radiação , Animais , Ciclo Celular/genética , Relação Dose-Resposta a Droga , Medicina Baseada em Evidências , Humanos , Redes e Vias Metabólicas/efeitos da radiação , Doses de Radiação
5.
Int J Radiat Biol ; 91(11): 867-871, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26189733

RESUMO

PURPOSE: Sublethal damage repair (SLDR) is a type of repair that occurs in split-dose irradiated cells, which was discovered more than 50 years ago. However, due to conflicting reported data, it remains unclear which DNA double-strand break (DSB) repair pathway, non-homologous end-joining (NHEJ) repair, homologous recombination repair (HRR) or both, contributes to SLDR, particularly in human cells. We were interested in clarifying this question. METHODS AND MATERIALS: Mammalian cell lines, including human, mouse and Chinese hamster ovary (CHO) cell lines, wild type, deficient in NHEJ or HRR were irradiated with either single dose or two split doses at 2- or 4-h intervals. The clonogenic assay was used to evaluate these cell radiosensitivities. RESULTS: All wild-type or HRR-deficient cells (including human, mouse and CHO cells) showed a higher survival rate after exposure to split-dose versus single-dose radiation; however, all classical NHEJ-deficient cells (including human, mouse and hamster cells) did not show any apparent sensitivity changes between single-dose and split-dose irradiation. CONCLUSION: Classical NHEJ mainly contributes to SLDR in mammalian cells (including human cells). These results have the potential to improve radiotherapy.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Fracionamento da Dose de Radiação , Tolerância a Radiação/fisiologia , Animais , Células CHO , Cricetulus , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Doses de Radiação , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Especificidade da Espécie
6.
Adv Mater ; 26(44): 7521-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25250689

RESUMO

The field-gradient, superficial photo fluidization of azomaterials allows a specific 3D nano-silhouette to be shaped over a large area, so as to get easy access to a 3D-tapered, deep sub-wavelength Au nanohole (20 nm spatial size) array. The squeezing of visible light into the deep sub-wavelength point and the relevant extraordinary optical transmission (EOT) are achieved using this 3D-tapered, 20 nm Au nanohole.

7.
Adv Mater ; 25(38): 5490-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23857634

RESUMO

The Field-Gradient Effect extends the photofluidization of azobenzene materials to 3D, multi-level micro/nanotexturing with a newly conceptualized design strategy based on "field-gradient photofluidization". In particular, we successfully characterized the vertical gradient optical absorption within the azobenzene material and the resulting field-gradient photofluidization both theoretically and experimentally. Furthermore, we could create the heterogeneously integrated micro/nanotextures at any desired surface heights, capability that is potentially beneficial for plasmonic applications.


Assuntos
Luz , Microtecnologia/métodos , Movimento (Física) , Nanotecnologia/métodos , Compostos Azo , Microtecnologia/instrumentação , Nanotecnologia/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA