Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(15): 155202, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33501923

RESUMO

We report a five-fold luminance increase of green-light-emitting CdSe@ZnS quantum-dot LEDs (QLEDs) in response to treatment with a 2-ethoxyethanol solution of cesium carbonate (Cs2CO3). The maximum luminous yield of Cs2CO3-treated QLED is as high as 3.41 cd A-1 at 6.4 V. To elucidate device-performance improvement, we model measured currents as the sum of radiative and non-radiative recombination components, which are respectively represented by modified Shockley equations. Variations in model parameters show that a shift in Fermi level, reduction of barrier heights, and passivation of mid-gap defect states are the main results of Cs2CO3 treatment. In spite of a large luminance difference, light-extraction efficiency remains the same at 9% regardless of Cs2CO3 treatment because of the similarity in optical structures.

2.
Nano Lett ; 20(9): 6690-6696, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786930

RESUMO

In this work, we demonstrated a phonon-polariton in the terahertz (THz) frequency range, generated in a crystallized lead halide perovskite film coated on metamaterials. When the metamaterial resonance was in tune with the phonon resonance of the perovskite film, Rabi splitting occurred due to the strong coupling between the resonances. The Rabi splitting energy was about 1.1 meV, which is larger than the metamaterial and phonon resonance line widths; the interaction potential estimation confirmed that the strong coupling regime was reached successfully. We were able to tune the polaritonic branches by varying the metamaterial resonance, thereby obtaining the dispersion curve with a clear anticrossing behavior. Additionally, we performed in situ THz spectroscopy as we annealed the perovskite film and studied the Rabi splitting as a function of the films' crystallization coverage. The Rabi splitting versus crystallization volume fraction exhibited a unique power-law scaling, depending on the crystal growth dimensions.

3.
Nanotechnology ; 30(50): 505202, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31501359

RESUMO

We report on a substantial increase in luminance and luminous efficiency of green-light emitting devices (LEDs) that use colloidal CdSe@ZnS quantum dots (QDs) as a light-emitting material in response to treatment with 1,2-ethanedithiol (EDT). The maximum luminance increased from 1146 to 8075 cd m-2, and luminous yield from 0.15 to 1.41 cd A-1 as a result of treating an incomplete device with drops of EDT right after spin-coating QDs onto a ZnO-nanoparticle layer. Based on systematic studies on substrate-dependent change in photoluminescence, and current-voltage and luminance-voltage characteristics, we propose that passivation of intra-gap defect states and relative shifts of energy levels relevant to the operation of QD LEDs are two main results of EDT treatment. In particular, we argue that energy-level shift without emission-color change can be attributed to surface-dipole effects.

4.
Nanotechnology ; 28(11): 115201, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28102832

RESUMO

Ultra-thin and ultra-smooth gold (Au) films are appealing for photonic applications including surface plasmon resonances and transparent contacts. However, poor adhesion at the Au-dielectric interface prohibits the formation of a mechanically stable, ultra-thin, and ultra-smooth Au film. A conventional solution is to use a metallic adhesion layer, such as titanium and chromium, however such layers cause the optical properties of pure Au to deteriorate. Here we report the use of silk protein to enhance the adhesion at the Au-dielectric interface, thus obtaining ultra-smooth sub-10 nm Au films. The Au films that were deposited onto the silk layer exhibited superior surface roughness to those deposited on SiO2, Si, and poly(methyl methacrylate), along with improved adhesion, electrical conductivity, and optical transparency. Additionally, we confirm that a metal-insulator-metal optical resonator can be successfully generated using a silk insulating layer without the use of a metallic adhesion layer.

5.
Chemphyschem ; 16(6): 1217-22, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25760990

RESUMO

With poly(3-hexylthiophene) (P3HT) nanowire (NW) inclusion in active layers (ALs), organic solar cells (OSCs) based on P3HT donor and indene-C60 bisadduct (ICBA) acceptor showed power conversion efficiency (PCE) improvements for both bulk heterojunction (BHJ)- and bilayer (BL)-structure AL devices. The PCE increase was approximately 14 % for both types of P3HT:ICBA OSCs. However, improvements in short-circuit current density (Jsc ) were about 4.4 and 6.4 % for BHJ- and BL-type AL devices, respectively. A systematic study showed that the addition of P3HT NWs did not result in enhanced internal quantum efficiencies for either type of device. However, the difference in light-harvesting efficiency was important in accounting for Jsc variations. Interestingly, there was no correlation between Jsc and PCE variations, whereas the open-circuit voltage (Voc ) and fill factor (FF) showed correlations with the PCE. The variation in FF is discussed in terms of Voc and equivalent-circuit parameters based on a nonideal diode model.

6.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391286

RESUMO

Ion sources are used in mass and energy spectrometry to ionize the neutral particles entering the instrument. The most classical technique used in planetary exploration is hot filaments emitting electrons with few tens of eV and impacting the neutral particles. The main limitations of such emitters are power consumption and outgassing due to heating of their local environment. Here, we built, tested, and demonstrated the advantages of using carbon nanotubes to replace hot filaments. Such emitters are based on a cold approach, use a limited amount of power, and achieve essentially the same efficiency as the hot filament-based source of ionization.

7.
Opt Express ; 21(6): 7633-40, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546146

RESUMO

We performed time-domain terahertz (THz) spectroscopy on reduced graphene oxide (rGO) network films coated on quartz substrates from dispersion solutions by spraying method. The rGO network films demonstrate high conductivity of about 900 S/cm in the THz frequency range after a high temperature reduction process. The frequency-dependent conductivities and the refractive indexes of the rGO films have been obtained and analyzed with respect to the Drude free-electron model, which is characterized by large scattering rate. Finally, we demonstrate that the THz conductivities can be manipulated by controlling the reduction process, which correlates well with the DC conductivity above the percolation limit.


Assuntos
Grafite/química , Óxidos/química , Radiação Terahertz , Condutividade Elétrica , Teste de Materiais
8.
Nanotechnology ; 24(11): 115201, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23449207

RESUMO

We fabricated and characterized quantum-dot light emitting devices (QLEDs) that consisted of a CdSe/ZnS quantum-dot (QD) emitting layer, a hole-transporting nickel oxide (NiO) layer and/or an electron-transporting zinc oxide (ZnO) layer. Both the p-type NiO and n-type ZnO layers were formed by using sol-gel processes. All the fabricated CdSe/ZnS QLEDs showed similar electroluminescence spectra that originated from the green CdSe/ZnS QDs. However, different combinations of hole- and electron-transporting layers resulted in efficiency variations. In addition to the control of the respective concentrations of holes and electrons within a multilayer device structure, which determines the luminance and efficiency of QLEDs, the use of metal oxide layers is advantageous for long-term stability of QLEDs because they are air stable and can block the permeation of water vapor and oxygen in ambient air to a QD emitting layer. Moreover, the wet chemistry processing for their formation makes metal oxide layers attractive for low cost and/or large area manufacture of QLEDs.

9.
Nanotechnology ; 24(46): 465303, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24157413

RESUMO

We have designed and fabricated a new type of field electron source for a novel onboard mass spectrometer. The new electron source, which is a field effect emitter in a triode configuration, consists of a CNT-column array cathode and an extraction gate with holes that are aligned concentrically with respect to the cylindrical CNT columns. In triode mode operation, cathode currents as large as ~420 µA have been emitted with an anode-to-gate current ratio of ~1.5. To account for the observed emission characteristics of the new electron source, we have carried out multi-scale simulations that combine a three-dimensional (3D) microscopic model in the vicinity of an actual emission site with a two-dimensional (2D) macroscopic model that covers the whole device structure. Because the mesh size in the microscopic 3D model is as small as 100 nm, the contributions of the extruding CNT bundle at the top edge of an electron column can be examined in detail. Unlike the macroscopic 2D simulation that shows only small field enhancement at CNT column's top edge, the multi-scale simulation successfully reproduced the local electric field strongly enough to emit the measured cathode currents and the electric field distribution which is consistent with the measured anode-to-gate current ratio.

10.
Korean J Parasitol ; 51(1): 119-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23467858

RESUMO

We report here a case of oral myiasis in the Republic of Korea. The patient was a 37-year-old man with a 30-year history of Becker's muscular dystrophy. He was intubated due to dyspnea 8 days prior to admission to an intensive care unit (ICU). A few hours after the ICU admission, 43 fly larvae were found during suction of the oral cavity. All maggots were identified as the third instars of Lucilia sericata (Diptera: Calliphoridae) by morphology. We discussed on the characteristics of myiasis acquired in Korea, including the infection risk and predisposing factors.


Assuntos
Dípteros/classificação , Boca/parasitologia , Miíase/diagnóstico , Miíase/parasitologia , Adulto , Animais , Dípteros/anatomia & histologia , Humanos , Larva/anatomia & histologia , Larva/classificação , Masculino , República da Coreia
11.
Materials (Basel) ; 16(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241445

RESUMO

Skutterudite compounds have been studied as potential thermoelectric materials due to their high thermoelectric efficiency, which makes them attractive candidates for applications in thermoelectric power generation. In this study, the effects of double-filling on the thermoelectric properties of the CexYb0.2-xCo4Sb12 skutterudite material system were investigated through the process of melt spinning and spark plasma sintering (SPS). By replacing Yb with Ce, the carrier concentration was compensated for by the extra electron from Ce donors, leading to optimized electrical conductivity, Seebeck coefficient, and power factor of the CexYb0.2-xCo4Sb12 system. However, at high temperatures, the power factor showed a downturn due to bipolar conduction in the intrinsic conduction regime. The lattice thermal conductivity of the CexYb0.2-xCo4Sb12 skutterudite system was clearly suppressed in the range between 0.025 and 0.1 for Ce content, due to the introduction of the dual phonon scattering center from Ce and Yb fillers. The highest ZT value of 1.15 at 750 K was achieved for the Ce0.05Yb0.15Co4Sb12 sample. The thermoelectric properties could be further improved by controlling the secondary phase formation of CoSb2 in this double-filled skutterudite system.

12.
Sci Adv ; 9(8): eadd8328, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827373

RESUMO

Boosting dielectric permittivity representing electrical polarizability of dielectric materials has been considered a keystone for achieving scientific breakthroughs as well as technological advances in various multifunctional devices. Here, we demonstrate sizable enhancements of low-frequency dielectric responses in oxygen-deficient oxide ceramics through specific treatments under humid environments. Ultrahigh dielectric permittivity (~5.2 × 106 at 1 Hz) is achieved by hydrogenation, when Ni-substituted BaTiO3 ceramics are exposed to high humidity. Intriguingly, thermal annealing can restore the dielectric on-state (exhibiting huge polarizability in the treated ceramics) to the initial dielectric off-state (displaying low polarizability of ~103 in the pristine ceramics after sintering). The conversion between these two dielectric states via the ambient environment-mediated treatments and the successive application of external stimuli allows us to realize reversible control of dielectric relaxation characteristics in oxide ceramics. Conceptually, our findings are of practical interest for applications to highly efficient dielectric-based humidity sensors.

13.
ACS Appl Mater Interfaces ; 14(22): 26295-26302, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613454

RESUMO

The spatial distribution of photogenerated carriers in atomically thin MoS2 flakes is investigated by measuring surface potential changes under light illumination using Kelvin probe force microscopy (KPFM). It is demonstrated that the vertical redistribution of photogenerated carriers, which is responsible for photocurrent generation in MoS2 photodetectors, can be imaged as surface potential changes with KPFM. The polarity of surface potential changes points to the trapping of photogenerated holes at the interface between MoS2 and the substrate as a major mechanism for the photoresponse in monolayer MoS2. The temporal response of the surface potential changes is compatible with the time constant of MoS2 photodetectors. The spatial inhomogeneity in the surface potential changes at the low light intensity that is related to the defect distribution in MoS2 is also investigated.

14.
Nat Commun ; 12(1): 3982, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172754

RESUMO

Metal-insulator-semiconductor (MIS) structures are widely used in Si-based solar water-splitting photoelectrodes to protect the Si layer from corrosion. Typically, there is a tradeoff between efficiency and stability when optimizing insulator thickness. Moreover, lithographic patterning is often required for fabricating MIS photoelectrodes. In this study, we demonstrate improved Si-based MIS photoanodes with thick insulating layers fabricated using thin-film reactions to create localized conduction paths through the insulator and electrodeposition to form metal catalyst islands. These fabrication approaches are low-cost and highly scalable, and yield MIS photoanodes with low onset potential, high saturation current density, and excellent stability. By combining this approach with a p+n-Si buried junction, further improved oxygen evolution reaction (OER) performance is achieved with an onset potential of 0.7 V versus reversible hydrogen electrode (RHE) and saturation current density of 32 mA/cm2 under simulated AM1.5G illumination. Moreover, in stability testing in 1 M KOH aqueous solution, a constant photocurrent density of ~22 mA/cm2 is maintained at 1.3 V versus RHE for 7 days.

15.
Sci Rep ; 11(1): 16781, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408249

RESUMO

We investigated the variation of current density-voltage (J-V) characteristics of an organic solar cell (OSC) in the dark and at 9 different light intensities ranging from 0.01 to 1 sun of the AM1.5G spectrum. All three conventional parameters, short-circuit currents (Jsc), open-circuit voltage (Voc), and Fill factor (FF), representing OSC performance evolved systematically in response to light intensity increase. Unlike Jsc that showed quasi-linear monotonic increase, Voc and FF showed distinctive non-monotonic variations. To elucidate the origin of such variations, we performed extensive simulation studies including Shockley-Read-Hall (SRH) recombination losses. Simulation results were sensitive to defect densities, and simultaneous agreement to 10 measured J-V curves was possible only with the defect density of [Formula: see text]. Based on analyses of simulation results, we were able to separate current losses into SRH- and bimolecular-recombination components and, moreover, identify that the competition between SRH- and bimolecular-loss currents were responsible for the aforementioned variations in Jsc, Voc, and FF. In particular, we verified that apparent demarcation in Voc, and FF variations, which seemed to appear at different light intensities, originated from the same mechanism of dominance switching between recombination losses.

16.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361172

RESUMO

We report an in situ characterization of transition-metal dichalcogenide (TMD) monolayers and twisted bilayers using a high-speed second-harmonic generation (SHG) imaging technique. High-frequency laser modulation and galvano scanning in the SHG imaging enabled a rapid identification of the crystallinity in the TMD, including the orientation and homogeneity with a speed of 1 frame/s. For a twisted bilayer MoS2, we studied the SHG peak intensity and angles as a function of the twist angle under a strong interlayer coupling. In addition, rapid SHG imaging can be used to visualize laser-induced ablation of monolayer and bilayer MoS2 in situ under illumination by a strong femtosecond laser. Importantly, we observed a characteristic threshold behavior; the ablation process occurred for a very short time duration once the preheating condition was reached. We investigated the laser thinning of the bilayer MoS2 with different twist angles. When the twist angle was 0°, the SHG decreased by approximately one-fourth of the initial intensity when one layer was removed. Conversely, when the twist angle was approximately 60° (the SHG intensity was suppressed), the SHG increased abruptly close to that of the nearby monolayer when one layer was removed. Precise layer-by-layer control was possible because of the unique threshold behavior of the laser-induced ablation.

17.
Opt Lett ; 35(16): 2669-71, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717418

RESUMO

We report on mode locking of a bulk Cr:YAG laser by using a transmission-type single-walled carbon nanotube saturable absorber. Stable and self-starting laser operation in the picosecond and femtosecond regimes is obtained at wavelengths around 1.5 microm. Tunable transform-limited sub-100 fs pulses are generated at a repetition rate of 85 MHz with an output power up to 110 mW.


Assuntos
Lasers de Estado Sólido , Nanotubos de Carbono , Absorção , Análise Espectral , Fatores de Tempo
18.
Chemphyschem ; 16(6): 1099-100, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25828050
19.
Nanotechnology ; 21(11): 115706, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20173234

RESUMO

We report on electron beam induced current (EBIC) from individual carbon nanotubes (CNTs) which are in contact with metal electrodes. The EBIC signals originate from the diffusion of excess carriers induced by the electron beam bombardment. The EBIC image enables us to locate the individual CNTs efficiently. From the polarity of the EBIC signals we can identify the electrical contacts to the metal electrodes. More importantly, we demonstrate that the EBIC can be used to characterize the local electrical properties of CNT-based devices, such as asymmetry in metal contacts and the presence of defects. EBIC is also observed regardless of the presence of insulating surfaces, indicating that the EBIC is a result of the direct interaction between the CNTs and the electron beams.

20.
Nanotechnology ; 21(48): 485504, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21063055

RESUMO

Flexible paper-like ZnO nanowire films are fabricated and the effect of L-lysine passivation of the nanowire surfaces on improving the UV photoresponse is studied. We prepare three types of nanowires with different defect contents, and find that the L-lysine treatment can suppress the oxygen-vacancy-related photoluminescence as well as enhance the UV photoconduction. The nanowires with fewer defects gain larger enhancement of UV photoconduction after L-lysine treatment. Reproducible UV photoresponse of the devices in humid air is obtained due to L-lysine surface passivation, ruling out the influence of water molecules in degrading the UV photocurrent.


Assuntos
Luz , Lisina/química , Nanofios/química , Óxido de Zinco/química , Nanofios/ultraestrutura , Pós , Análise Espectral , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA