Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
J Chem Inf Model ; 62(23): 6069-6083, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450130

RESUMO

We report an automated workflow for production free-energy simulation setup and analysis (ProFESSA) using the GPU-accelerated AMBER free-energy engine with enhanced sampling features and analysis tools, part of the AMBER Drug Discovery Boost package that has been integrated into the AMBER22 release. The workflow establishes a flexible, end-to-end pipeline for performing alchemical free-energy simulations that brings to bear technologies, including new enhanced sampling features and analysis tools, to practical drug discovery problems. ProFESSA provides the user with top-level control of large sets of free-energy calculations and offers access to the following key functionalities: (1) automated setup of file infrastructure; (2) enhanced conformational and alchemical sampling with the ACES method; and (3) network-wide free-energy analysis with the optional imposition of cycle closure and experimental constraints. The workflow is applied to perform absolute and relative solvation free-energy and relative ligand-protein binding free-energy calculations using different atom-mapping procedures. Results demonstrate that the workflow is internally consistent and highly robust. Further, the application of a new network-wide Lagrange multiplier constraint analysis that imposes key experimental constraints substantially improves binding free-energy predictions.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Termodinâmica , Entropia , Proteínas/química , Ligantes
3.
J Chem Inf Model ; 61(9): 4145-4151, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34521199

RESUMO

Alchemical free energy methods, such as free energy perturbation (FEP) and thermodynamic integration (TI), become increasingly popular and crucial for drug design and discovery. However, the system preparation of alchemical free energy simulation is an error-prone, time-consuming, and tedious process for a large number of ligands. To address this issue, we have recently presented CHARMM-GUI Free Energy Calculator that can provide input and postprocessing scripts for NAMD and GENESIS FEP molecular dynamics systems. In this work, we extended three submodules of Free Energy Calculator to work with the full suite of GPU-accelerated alchemical free energy methods and tools in AMBER, including input and postprocessing scripts. The BACE1 (ß-secretase 1) benchmark set was used to validate the AMBER-TI simulation systems and scripts generated by Free Energy Calculator. The overall results of relatively large and diverse systems are almost equivalent with different protocols (unified and split) and with different timesteps (1, 2, and 4 fs), with R2 > 0.9. More importantly, the average free energy differences between two protocols are small and reliable with four independent runs, with a mean unsigned error (MUE) below 0.4 kcal/mol. Running at least four independent runs for each pair with AMBER20 (and FF19SB/GAFF2.1/OPC force fields), we obtained a MUE of 0.99 kcal/mol and root-mean-square error of 1.31 kcal/mol for 58 alchemical transformations in comparison with experimental data. In addition, a set of ligands for T4-lysozyme was used to further validate our free energy calculation protocol whose results are close to experimental data (within 1 kcal/mol). In summary, Free Energy Calculator provides a user-friendly web-based tool to generate the AMBER-TI system and input files for high-throughput binding free energy calculations with access to the full set of GPU-accelerated alchemical free energy, enhanced sampling, and analysis methods in AMBER.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Entropia , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
4.
J Chem Inf Model ; 60(11): 5296-5300, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32551593

RESUMO

Herein we provide high-precision validation tests of the latest GPU-accelerated free energy code in AMBER. We demonstrate that consistent free energy results are obtained in both the gas phase and in solution. We first show, in the context of thermodynamic integration (TI), that the results are invariant with respect to "split" (e.g., stepwise decharge-vdW-recharge) versus "unified" protocols. This brought to light a subtle inconsistency in previous versions of AMBER that was traced to the improper treatment of 1-4 vdW and electrostatic interactions involving atoms across the softcore boundary. We illustrate that under the assumption that the ensembles produced by different legs of the alchemical transformation between molecules A and B in the gas phase and aqueous phase are very small, the inconsistency in the relative hydration free energy ΔΔGhydr[A → B] = ΔGaq[A → B] - ΔGgas[A → B] is minimal. However, for general cases where the ensembles are shown to be substantially different, as expected in ligand-protein binding applications, these errors can be large. Finally, we demonstrate that results for relative hydration free energy simulations are independent of TI or multistate Bennett's acceptance ratio (MBAR) analysis, invariant to the specific choice of the softcore region, and in agreement with results derived from absolute hydration free energy values.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Ligação Proteica , Termodinâmica
5.
J Chem Inf Model ; 60(11): 5595-5623, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32936637

RESUMO

Predicting protein-ligand binding affinities and the associated thermodynamics of biomolecular recognition is a primary objective of structure-based drug design. Alchemical free energy simulations offer a highly accurate and computationally efficient route to achieving this goal. While the AMBER molecular dynamics package has successfully been used for alchemical free energy simulations in academic research groups for decades, widespread impact in industrial drug discovery settings has been minimal because of the previous limitations within the AMBER alchemical code, coupled with challenges in system setup and postprocessing workflows. Through a close academia-industry collaboration we have addressed many of the previous limitations with an aim to improve accuracy, efficiency, and robustness of alchemical binding free energy simulations in industrial drug discovery applications. Here, we highlight some of the recent advances in AMBER20 with a focus on alchemical binding free energy (BFE) calculations, which are less computationally intensive than alternative binding free energy methods where full binding/unbinding paths are explored. In addition to scientific and technical advances in AMBER20, we also describe the essential practical aspects associated with running relative alchemical BFE calculations, along with recommendations for best practices, highlighting the importance not only of the alchemical simulation code but also the auxiliary functionalities and expertise required to obtain accurate and reliable results. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative BFE simulations in AMBER20, with a focus on real-world drug discovery applications.


Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Termodinâmica
6.
J Chem Phys ; 153(11): 114502, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962378

RESUMO

The General AMBER Force Field (GAFF) has been broadly used by researchers all over the world to perform in silico simulations and modelings on diverse scientific topics, especially in the field of computer-aided drug design whose primary task is to accurately predict the affinity and selectivity of receptor-ligand binding. The atomic partial charges in GAFF and the second generation of GAFF (GAFF2) were originally developed with the quantum mechanics derived restrained electrostatic potential charge, but in practice, users usually adopt an efficient charge method, Austin Model 1-bond charge corrections (AM1-BCC), based on which, without expensive ab initio calculations, the atomic charges could be efficiently and conveniently obtained with the ANTECHAMBER module implemented in the AMBER software package. In this work, we developed a new set of BCC parameters specifically for GAFF2 using 442 neutral organic solutes covering diverse functional groups in aqueous solution. Compared to the original BCC parameter set, the new parameter set significantly reduced the mean unsigned error (MUE) of hydration free energies from 1.03 kcal/mol to 0.37 kcal/mol. More excitingly, this new AM1-BCC model also showed excellent performance in the solvation free energy (SFE) calculation on diverse solutes in various organic solvents across a range of different dielectric constants. In this large-scale test with totally 895 neutral organic solvent-solute systems, the new parameter set led to accurate SFE predictions with the MUE and the root-mean-square-error of 0.51 kcal/mol and 0.65 kcal/mol, respectively. This newly developed charge model, ABCG2, paved a promising path for the next generation GAFF development.

7.
J Chem Inf Model ; 59(7): 3128-3135, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31244091

RESUMO

With renewed interest in free energy methods in contemporary structure-based drug design, there is a pressing need to validate against multiple targets and force fields to assess the overall ability of these methods to accurately predict relative binding free energies. We computed relative binding free energies using graphics processing unit accelerated thermodynamic integration (GPU-TI) on a data set originally assembled by Schrödinger, Inc. Using their GPU free energy code (FEP+) and the OPLS2.1 force field combined with the REST2 enhanced sampling approach, these authors obtained an overall MUE of 0.9 kcal/mol and an overall RMSD of 1.14 kcal/mol. In our study using GPU-TI from AMBER with the AMBER14SB/GAFF1.8 force field but without enhanced sampling, we obtained an overall MUE of 1.17 kcal/mol and an overall RMSD of 1.50 kcal/mol for the 330 perturbations contained in this data set. A more detailed analysis of our results suggested that the observed differences between the two studies arise from differences in sampling protocols along with differences in the force fields employed. Future work should address the problem of establishing benchmark quality results with robust statistical error bars obtained through multiple independent runs and enhanced sampling, which is possible with the GPU-accelerated features in AMBER.


Assuntos
Termodinâmica , Gráficos por Computador , Desenho de Fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Software
8.
J Chem Inf Model ; 58(10): 2043-2050, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30199633

RESUMO

We report progress in graphics processing unit (GPU)-accelerated molecular dynamics and free energy methods in Amber18. Of particular interest is the development of alchemical free energy algorithms, including free energy perturbation and thermodynamic integration methods with support for nonlinear soft-core potential and parameter interpolation transformation pathways. These methods can be used in conjunction with enhanced sampling techniques such as replica exchange, constant-pH molecular dynamics, and new 12-6-4 potentials for metal ions. Additional performance enhancements have been made that enable appreciable speed-up on GPUs relative to the previous software release.


Assuntos
Simulação de Dinâmica Molecular , Software , Algoritmos , Gráficos por Computador , Concentração de Íons de Hidrogênio , Termodinâmica
9.
RNA ; 21(9): 1566-77, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26170378

RESUMO

The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.


Assuntos
Vírus Delta da Hepatite/enzimologia , Magnésio/metabolismo , RNA Catalítico/química , RNA Viral/química , Catálise , Domínio Catalítico , Modelos Químicos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Fosforilação , Teoria Quântica , RNA Catalítico/metabolismo , RNA Viral/metabolismo
10.
J Comput Aided Mol Des ; 30(7): 533-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27480697

RESUMO

In drug discovery, protonation states and tautomerization are easily overlooked. Through a Merck-Rutgers collaboration, this paper re-examined the initial settings and preparations for the Thermodynamic Integration (TI) calculation in AMBER Free-Energy Workflows, demonstrating the value of careful consideration of ligand protonation and tautomer state. Finally, promising results comparing AMBER TI and Schrödinger FEP+ are shown that should encourage others to explore the value of TI in routine Structure-based Drug Design.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Prótons , Humanos , Ligantes , Modelos Moleculares , Politetrafluoretileno/química , Ligação Proteica , Termodinâmica
11.
J Chem Theory Comput ; 20(9): 3935-3953, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666430

RESUMO

An alchemical enhanced sampling (ACES) method has recently been introduced to facilitate importance sampling in free energy simulations. The method achieves enhanced sampling from Hamiltonian replica exchange within a dual topology framework while utilizing new smoothstep softcore potentials. A common sampling problem encountered in lead optimization is the functionalization of aromatic rings that exhibit distinct conformational preferences when interacting with the protein. It is difficult to converge the distribution of ring conformations due to the long time scale of ring flipping events; however, the ACES method addresses this issue by modeling the syn and anti ring conformations within a dual topology. ACES thereby samples the conformer distributions by alchemically tunneling between states, as opposed to traversing a physical pathway with a high rotational barrier. We demonstrate the use of ACES to overcome conformational sampling issues involving ring flipping in ML300-derived noncovalent inhibitors of SARS-CoV-2 Main Protease (Mpro). The demonstrations explore how the use of replica exchange and the choice of softcore selection affects the convergence of the ring conformation distributions. Furthermore, we examine how the accuracy of the calculated free energies is affected by the degree of phase space overlap (PSO) between adjacent states (i.e., between neighboring λ-windows) and the Hamiltonian replica exchange acceptance ratios. Both of these factors are sensitive to the spacing between the intermediate states. We introduce a new method for choosing a schedule of λ values. The method analyzes short "burn-in" simulations to construct a 2D map of the nonlocal PSO. The schedule is obtained by optimizing an alchemical pathway on the 2D map that equalizes the PSO between the λ intervals. The optimized phase space overlap λ-spacing method (Opt-PSO) leads to more numerous end-to-end single passes and round trips due to the correlation between PSO and Hamiltonian replica exchange acceptance ratios. The improved exchange statistics enhance the efficiency of ACES method. The method has been implemented into the FE-ToolKit software package, which is freely available.

12.
J Chem Theory Comput ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630672

RESUMO

We present an alchemical enhanced sampling (ACES) method implemented in the GPU-accelerated AMBER free energy MD engine. The methods hinges on the creation of an "enhanced sampling state" by reducing or eliminating selected potential energy terms and interactions that lead to kinetic traps and conformational barriers while maintaining those terms that curtail the need to otherwise sample large volumes of phase space. For example, the enhanced sampling state might involve transforming regions of a ligand and/or protein side chain into a noninteracting "dummy state" with internal electrostatics and torsion angle terms turned off. The enhanced sampling state is connected to a real-state end point through a Hamiltonian replica exchange (HREMD) framework that is facilitated by newly developed alchemical transformation pathways and smoothstep softcore potentials. This creates a counterdiffusion of real and enhanced-sampling states along the HREMD network. The effect of a differential response of the environment to the real and enhanced-sampling states is minimized by leveraging the dual topology framework in AMBER to construct a counterbalancing HREMD network in the opposite alchemical direction with the same (or similar) real and enhanced sampling states at inverted end points. The method has been demonstrated in a series of test cases of increasing complexity where traditional MD, and in several cases alternative REST2-like enhanced sampling methods, are shown to fail. The hydration free energy for acetic acid was shown to be independent of the starting conformation, and the values for four additional edge case molecules from the FreeSolv database were shown to have a significantly closer agreement with experiment using ACES. The method was further able to handle different rotamer states in a Cdk2 ligand identified as fractionally occupied in crystal structures. Finally, ACES was applied to T4-lysozyme and demonstrated that the side chain distribution of V111χ1 could be reliably reproduced for the apo state, bound to p-xylene, and in p-xylene→ benzene transformations. In these cases, the ACES method is shown to be highly robust and superior to a REST2-like enhanced sampling implementation alone.

13.
J Chem Theory Comput ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622640

RESUMO

We develop a framework for the design of optimized alchemical transformation pathways in free energy simulations using nonlinear mixing and a new functional form for so-called "softcore" potentials. We describe the implementation and testing of this framework in the GPU-accelerated AMBER software suite. The new optimized alchemical transformation pathways integrate a number of important features, including (1) the use of smoothstep functions to stabilize behavior near the transformation end points, (2) consistent power scaling of Coulomb and Lennard-Jones (LJ) interactions with unitless control parameters to maintain balance of electrostatic attractions and exchange repulsions, (3) pairwise form based on the LJ contact radius for the effective interaction distance with separation-shifted scaling, and (4) rigorous smoothing of the potential at the nonbonded cutoff boundary. The new softcore potential form is combined with smoothly transforming nonlinear λ weights for mixing specific potential energy terms, along with flexible λ-scheduling features, to enable robust and stable alchemical transformation pathways. The resulting pathways are demonstrated and tested, and shown to be superior to the traditional methods in terms of numerical stability and minimal variance of the free energy estimates for all cases considered. The framework presented here can be used to design new alchemical enhanced sampling methods, and leveraged in robust free energy workflows for large ligand data sets.

14.
RNA ; 16(4): 769-80, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20167653

RESUMO

The L1 ligase is an in vitro selected ribozyme that uses a noncanonically base-paired ligation site to catalyze regioselectively and regiospecifically the 5' to 3' phosphodiester bond ligation, a reaction relevant to origin of life hypotheses that invoke an RNA world scenario. The L1 ligase crystal structure revealed two different conformational states that were proposed to represent the active and inactive forms. It remains an open question as to what degree these two conformers persist as stable conformational intermediates in solution, and along what pathway are they able to interconvert. To explore these questions, we have performed a series of molecular dynamics simulations in explicit solvent of the inactive-active conformational switch in L1 ligase. Four simulations were performed departing from both conformers in both the reactant and product states, in addition to a simulation where local unfolding in the active state was induced. From these simulations, along with crystallographic data, a set of four virtual torsion angles that span two evolutionarily conserved and restricted regions were identified as dynamical hinge points in the conformational switch transition. The ligation site visits three distinct states characterized by hydrogen bond patterns that are correlated with the formation of specific contacts that may promote catalysis. The insights gained from these simulations contribute to a more detailed understanding of the coupled catalytic/conformational switch mechanism of L1 ligase that may facilitate the design and engineering of new catalytic riboswitches.


Assuntos
RNA Ligase (ATP)/química , RNA Catalítico/química , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Conformação Proteica , RNA Ligase (ATP)/metabolismo , RNA Catalítico/metabolismo
15.
J Chem Theory Comput ; 17(6): 3710-3726, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029468

RESUMO

In silico screening of drug-target interactions is a key part of the drug discovery process. Changes in the drug scaffold via contraction or expansion of rings, the breaking of rings, and the introduction of cyclic structures from acyclic structures are commonly applied by medicinal chemists to improve binding affinity and enhance favorable properties of candidate compounds. These processes, commonly referred to as scaffold hopping, are challenging to model computationally. Although relative binding free energy (RBFE) calculations have shown success in predicting binding affinity changes caused by perturbing R-groups attached to a common scaffold, applications of RBFE calculations to modeling scaffold hopping are relatively limited. Scaffold hopping inevitably involves breaking and forming bond interactions of quadratic functional forms, which is highly challenging. A novel method for handling ring opening/closure/contraction/expansion and linker contraction/expansion is presented here. To the best of our knowledge, RBFE calculations on linker contraction/expansion have not been previously reported. The method uses auxiliary restraints to hold the atoms at the ends of a bond in place during the breaking and forming of the bonds. The broad applicability of the method was demonstrated by examining perturbations involving small-molecule macrocycles and mutations of proline in proteins. High accuracy was obtained using the method for most of the perturbations studied. The rigor of the method was isolated from the force field by validating the method using relative and absolute hydration free energy calculations compared to standard simulation results. Unlike other methods that rely on λ-dependent functional forms for bond interactions, the method presented here can be employed using modern molecular dynamics software without modification of codes or force field functions.

16.
J Am Chem Soc ; 132(38): 13505-18, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20812715

RESUMO

Computational studies of the mutational effects at the C3, G8, and G5 positions of the hammerhead ribozyme (HHR) are reported, based on a series of twenty-four 100-ns molecular dynamics simulations of the native and mutated HHR in the reactant state and in an activated precursor state (G8:2'OH deprotonated). Invoking the assumptions that G12 acts as the general base while the 2'OH of G8 acts as a general acid, the simulations are able to explain the origins of experimentally observed mutational effects, including several that are not easily inferred from the crystal structure. Simulations suggest that the Watson-Crick base-pairing between G8 and C3, the hydrogen bond network between C17 and G5, and the base stacking interactions between G8 and C1.1, collectively, are key to maintaining an active site structure conducive for catalytic activity. Mutation-induced disruption of any of these interactions will adversely affect activity. The simulation results predict that the C3U/G8D double mutant, where D is 2,6-diaminopurine, will have a rescue effect relative to the corresponding single mutations. Two general conclusions about the simulations emerge from this work. First, mutation simulations may require 30 ns or more to suitably relax such that the mutational effects become apparent. Second, in some cases, it is necessary to look beyond the reactant state in order to interpret mutational effects in terms of catalytically active structure. The present simulation results lead to better understanding of the origin of experimental mutational effects and provide insight into the key conserved features necessary to maintain the integrity of the active site architecture.


Assuntos
Mutagênese , RNA Catalítico/química , Biocatálise , Ligação de Hidrogênio , RNA Catalítico/genética
17.
ACS Omega ; 5(9): 4611-4619, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175507

RESUMO

Accurate prediction of the absolute or relative protein-ligand binding affinity is one of the major tasks in computer-aided drug design projects, especially in the stage of lead optimization. In principle, the alchemical free energy (AFE) methods such as thermodynamic integration (TI) or free-energy perturbation (FEP) can fulfill this task, but in practice, a lot of hurdles prevent them from being routinely applied in daily drug design projects, such as the demanding computing resources, slow computing processes, unavailable or inaccurate force field parameters, and difficult and unfriendly setting up and post-analysis procedures. In this study, we have exploited practical protocols of applying the CPU (central processing unit)-TI and newly developed GPU (graphic processing unit)-TI modules and other tools in the AMBER software package, combined with ff14SB/GAFF1.8 force fields, to conduct efficient and accurate AFE calculations on protein-ligand binding free energies. We have tested 134 protein-ligand complexes in total for four target proteins (BACE, CDK2, MCL1, and PTP1B) and obtained overall comparable performance with the commercial Schrodinger FEP+ program (WangJ. Am. Chem. Soc.2015, 137, 2695-2703). The achieved accuracy fits within the requirements for computations to generate effective guidance for experimental work in drug lead optimization, and the needed wall time is short enough for practical application. Our verified protocol provides a practical solution for routine AFE calculations in real drug design projects.

18.
J Chem Theory Comput ; 16(9): 5512-5525, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32672455

RESUMO

Progress in the development of GPU-accelerated free energy simulation software has enabled practical applications on complex biological systems and fueled efforts to develop more accurate and robust predictive methods. In particular, this work re-examines concerted (a.k.a., one-step or unified) alchemical transformations commonly used in the prediction of hydration and relative binding free energies (RBFEs). We first classify several known challenges in these calculations into three categories: endpoint catastrophes, particle collapse, and large gradient-jumps. While endpoint catastrophes have long been addressed using softcore potentials, the remaining two problems occur much more sporadically and can result in either numerical instability (i.e., complete failure of a simulation) or inconsistent estimation (i.e., stochastic convergence to an incorrect result). The particle collapse problem stems from an imbalance in short-range electrostatic and repulsive interactions and can, in principle, be solved by appropriately balancing the respective softcore parameters. However, the large gradient-jump problem itself arises from the sensitivity of the free energy to large values of the softcore parameters, as might be used in trying to solve the particle collapse issue. Often, no satisfactory compromise exists with the existing softcore potential form. As a framework for solving these problems, we developed a new family of smoothstep softcore (SSC) potentials motivated by an analysis of the derivatives along the alchemical path. The smoothstep polynomials generalize the monomial functions that are used in most implementations and provide an additional path-dependent smoothing parameter. The effectiveness of this approach is demonstrated on simple yet pathological cases that illustrate the three problems outlined. With appropriate parameter selection, we find that a second-order SSC(2) potential does at least as well as the conventional approach and provides vast improvement in terms of consistency across all cases. Last, we compare the concerted SSC(2) approach against the gold-standard stepwise (a.k.a., decoupled or multistep) scheme over a large set of RBFE calculations as might be encountered in drug discovery.

19.
BMC Struct Biol ; 9: 58, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19744331

RESUMO

BACKGROUND: The functional relevance of many of the recently detected JAK2 mutations, except V617F and exon 12 mutants, in patients with chronic myeloproliferative neoplasia (MPN) has been significantly overlooked. To explore atomic-level explanations of the possible mutational effects from those overlooked mutants, we performed a set of molecular dynamics simulations on clinically observed mutants, including newly discovered mutations (K539L, R564L, L579F, H587N, S591L, H606Q, V617I, V617F, C618R, L624P, whole exon 14-deletion) and control mutants (V617C, V617Y, K603Q/N667K). RESULTS: Simulation results are consistent with all currently available clinical/experimental evidence. The simulation-derived putative interface, not possibly obtained from static models, between the kinase (JH1) and pseudokinase (JH2) domains of JAK2 provides a platform able to explain the mutational effect for all mutants, including presumably benign control mutants, at the atomic level. CONCLUSION: The results and analysis provide structural bases for mutational mechanisms of JAK2, may advance the understanding of JAK2 auto-regulation, and have the potential to lead to therapeutic approaches. Together with recent mutation profiling results demonstrating the breadth of clinically observed JAK2 mutations, our findings suggest that molecular testing/diagnostics of JAK2 should extend beyond V617F and exon 12 mutations, and perhaps should encompass most of the pseudo-kinase domain-coding region.


Assuntos
Éxons , Janus Quinase 2/química , Janus Quinase 2/genética , Mutação , Homologia Estrutural de Proteína , Biologia Computacional , Humanos , Modelos Moleculares , Fenilalanina/genética , Estrutura Terciária de Proteína , Valina/genética
20.
Chem Biol ; 15(4): 332-42, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18420140

RESUMO

Although the hammerhead ribozyme is regarded as a prototype for understanding RNA catalysis, the mechanistic roles of associated metal ions and water molecules in the cleavage reaction remain controversial. We have investigated the catalytic potential of observed divalent metal ions and water molecules bound to a 2 A structure of the full-length hammerhead ribozyme by using X-ray crystallography in combination with molecular dynamics simulations. A single Mn(2+) is observed to bind directly to the A9 phosphate in the active site, accompanying a hydrogen-bond network involving a well-ordered water molecule spanning N1 of G12 (the general base) and 2'-O of G8 (previously implicated in general acid catalysis) that we propose, based on molecular dynamics calculations, facilitates proton transfer in the cleavage reaction. Phosphate-bridging metal interactions and other mechanistic hypotheses are also tested with this approach.


Assuntos
RNA Catalítico/química , RNA Catalítico/metabolismo , Solventes/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Manganês/metabolismo , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA