Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732968

RESUMO

Gas detection is crucial for detecting environmentally harmful gases. Organic field-effect transistor (OFET)-based gas sensors have attracted attention due to their promising performance and potential for integration into flexible and wearable devices. This review examines the operating mechanisms of OFET-based gas sensors and explores methods for improving sensitivity, with a focus on porous structures. Researchers have achieved significant enhancements in sensor performance by controlling the thickness and free volume of the organic semiconductor layer. Additionally, innovative fabrication techniques like self-assembly and etching have been used to create porous structures, facilitating the diffusion of target gas molecules, and improving sensor response and recovery. These advancements in porous structure fabrication suggest a promising future for OFET-based gas sensors, offering increased sensitivity and selectivity across various applications.

2.
Soft Matter ; 15(37): 7369-7373, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31468035

RESUMO

Solution processing is one of the most important techniques for producing large-area, uniform films for printed electronics via a low-cost process. Herein, we propose a time-controlled spin-coating method to improve the crystallinity of films of the solution-processable organic small-molecule semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene). A key factor in this process was to halt spinning before drying had begun. We used microscopic and spectroscopic analyses to systematically investigate the effect of spinning time on the evaporation rate of solvent at different spinning rates. We found that the crystallinity of the TIPS-pentacene thin films was substantially enhanced when the spinning time was limited to a few seconds, without post-treatment. We fabricated field-effect transistors using thin films deposited by this method and found that the field-effect mobility was enhanced ∼100-fold compared with that of a device fabricated using a film deposited by the conventional spin-coating method.

3.
Nanotechnology ; 30(34): 345502, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30865941

RESUMO

The direct method of detecting a virus with extremely low concentration is recommended for the diagnosis of viral disease. In this study, coplanar-gate graphene field-effect transistors (GFETs) were built on flexible polyethylene terephthalate substrates for the attomolar detection of a virus. The GFETs exhibited a very low detection limit of 47.8 aM with relatively low source/drain voltage due to aqueous dielectric media which stabilizes viruses and antibodies for specific bonding. The antibody as a probe molecule was decorated on a graphene surface using 1-pyrenebutanoic acid succinimidyl ester that had previously been immobilized on a graphene surface. The Dirac point voltage shifted downward after dropping the virus solution, due to the electrostatic gating effect of graphene in the antigen (namely, virus)-antibody complex. The virus detection platform used in this study is expected to be beneficial for direct diagnosis in saline environments, since the performances of GFETs were not significantly affected by the presence of Na+ and Cl-. Furthermore, since our flexible and transparent virus sensors can be used in a wearable device, they provide a simple and fast method for diagnosing viruses.


Assuntos
Grafite/química , Imunoensaio/métodos , Plásticos/química , Transistores Eletrônicos , Vírus/isolamento & purificação , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , HIV-1/imunologia , HIV-1/isolamento & purificação , Imunoensaio/instrumentação , Limite de Detecção , Polietilenotereftalatos/química , Eletricidade Estática , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/isolamento & purificação , Vírus/imunologia
4.
Nano Lett ; 13(4): 1462-7, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23510359

RESUMO

Residual polymer (here, poly(methyl methacrylate), PMMA) left on graphene from transfer from metals or device fabrication processes affects its electrical and thermal properties. We have found that the amount of polymer residue left after the transfer of chemical vapor deposited (CVD) graphene varies depending on the initial concentration of the polymer solution, and this residue influences the electrical performance of graphene field-effect transistors fabricated on SiO2/Si. A PMMA solution with lower concentration gave less residue after exposure to acetone, resulting in less p-type doping in graphene and higher charge carrier mobility. The electrical properties of the weakly p-doped graphene could be further enhanced by exposure to formamide with the Dirac point at nearly zero gate voltage and a more than 50% increase of the room-temperature charge carrier mobility in air. This can be attributed to electron donation to graphene by the -NH2 functional group in formamide that is absorbed in the polymer residue. This work provides a route to enhancing the electrical properties of CVD-grown graphene even when it has a thin polymer coating.


Assuntos
Grafite/química , Polímeros/química , Dióxido de Silício/química , Transistores Eletrônicos , Cristalização , Condutividade Elétrica , Nanoestruturas/química , Polimetil Metacrilato/química , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 16(24): 31719-31728, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836704

RESUMO

Controlling miscibility between mixture components helps induce spontaneous phase separation into distinct domain sizes, thereby resulting in porous conjugated polymer (CP) films with different pore sizes after selective removal of auxiliary components. The miscibility of the CP mixture can be tailored by blending auxiliary model components designed by reflecting the difference in solubility parameters with the CP. The pore size increases as the difference in solubility parameters between the matrix CP and auxiliary component increases. Electrical properties are not critically damaged even after forming pores in the CP; however, excessive pore formation enables pores to spread to the vicinity of the dielectric layer of CP-based field-effect transistors (FETs), leading to partial loss of the carrier-transporting active channel in the FET. The porous structure is advantageous for not only increasing detection sensitivity but also improving the detection speed when porous CP films are applied to FET-based gas sensors for NO2 detection. The quantitative analysis of the response-recovery trend of the FET sensor using the Langmuir isotherm suggests that the response speed can be improved by more than 2.5 times with a 50-fold increase in NO2 sensitivity compared with pristine CP, which has no pores.

6.
Nano Lett ; 12(3): 1431-6, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22324301

RESUMO

Semiconductor nanowire arrays integrated vertically on graphene films offer significant advantages for many sophisticated device applications. We report on van der Waals (VDW) epitaxy of InAs nanowires vertically aligned on graphene substrates using metal-organic chemical vapor deposition. The strong correlation between the growth direction of InAs nanowires and surface roughness of graphene substrates was investigated using various graphene films with different numbers of stacked layers. Notably, vertically well-aligned InAs nanowire arrays were obtained easily on single-layer graphene substrates with sufficiently strong VDW attraction. This study presents a considerable advance toward the VDW heteroepitaxy of inorganic nanostructures on chemical vapor-deposited large-area graphenes. More importantly, this work demonstrates the thinnest epitaxial substrate material that yields vertical nanowire arrays by the VDW epitaxy method.


Assuntos
Arsenicais/química , Cristalização/métodos , Grafite/química , Índio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Anisotropia , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície
7.
Nano Lett ; 12(5): 2374-8, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22482878

RESUMO

We have devised a method to selectively fluorinate graphene by irradiating fluoropolymer-covered graphene with a laser. This fluoropolymer produces active fluorine radicals under laser irradiation that react with graphene but only in the laser-irradiated region. The kinetics of C-F bond formation is dependent on both the laser power and fluoropolymer thickness, proving that fluorination occurs by the decomposition of the fluoropolymer. Fluorination leads to a dramatic increase in the resistance of the graphene while the basic skeletal structure of the carbon bonding network is maintained. Considering the simplicity of the fluorination process and that it allows patterning with a nontoxic fluoropolymer as a solid source, this method could find application to generate fluorinated graphene in graphene-based electronic devices such as for the electrical isolation of graphene.

8.
Polymers (Basel) ; 15(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896306

RESUMO

Fiber-type electronics is a crucial field for realizing wearable electronic devices with a wide range of sensing applications. In this paper, we begin by discussing the fabrication of fibers from conjugated polymers. We then explore the utilization of these fibers in the development of field-effect and electrochemical transistors. Finally, we investigate the diverse applications of these fiber-type transistors, encompassing chemical and physical sensors. Our paper aims to offer a comprehensive understanding of the use of conjugated polymers in fiber-type transistor-based sensors.

9.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631519

RESUMO

In this study, we investigated the gas-sensing mechanism in bottom-gate organic field-effect transistors (OFETs) using poly(triarylamine) (PTAA). A comparison of different device architectures revealed that the top-contact structure exhibited superior gas-sensing performance in terms of field-effect mobility and sensitivity. The thickness of the active layer played a critical role in enhancing these parameters in the top-contact structure. Moreover, the distance and pathway for charge carriers to reach the active channel were found to significantly influence the gas response. Additionally, the surface treatment of the SiO2 dielectric with hydrophobic self-assembled mono-layers led to further improvement in the performance of the OFETs and gas sensors by effectively passivating the silanol groups. Under optimal conditions, our PTAA-based gas sensors achieved an exceptionally high response (>200%/ppm) towards NO2. These findings highlight the importance of device and interface engineering for optimizing gas-sensing properties in amorphous polymer semiconductors, offering valuable insights for the design of advanced gas sensors.

10.
Materials (Basel) ; 16(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049171

RESUMO

To investigate the effect of a side chain on the electrical properties of a conjugated polymer (CP), we designed two different CPs containing alkyl and ethylene glycol (EG) derivatives as side chains on the same conjugated backbone with an electron donor-acceptor (D-A) type chain configuration. PTQ-T with an alkyl side chain showed typical p-type semiconducting properties, whereas PTQ-TEG with an EG-based side chain exhibited electrically conductive behavior. Both CPs generated radical species owing to their strong D-A type conjugated structure; however, the spin density was much greater in PTQ-TEG. X-ray photoelectron spectroscopy analysis revealed that the O atoms of the EG-based side chains in PTQ-TEG were intercalated with the conjugated backbone and increased the carrier density. Upon application to a field-effect transistor sensor for PTQ-T and resistive sensor for PTQ-TEG, PTQ-TEG exhibited a better NO2 detection capability with faster signal recovery characteristics than PTQ-T. Compared with the relatively rigid alkyl side chains of PTQ-T, the flexible EG-based side chains in PTQ-TEG have a higher potential to enlarge the free volume as well as improve NO2-affinity, which promotes the diffusion of NO2 in and out of the PTQ-TEG film, and ultimately resulting in better NO2 detection capabilities.

11.
Small ; 8(20): 3129-36, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22826024

RESUMO

Au nanoparticles and films are deposited onto clean graphene surfaces to study the doping effect of different Au configurations. Micro-Raman spectra show that both the doping type and level of graphene can be tuned by fine control of the Au deposition. The morphological structures of Au on graphene are imaged by transmission electron microscopy, which indicate a size-dependent electrical characteristic: isolated Au nanoparticles produce n-type doping of graphene, while continuous Au films produce p-type doping. Accordingly, graphene field-effect transistors are fabricated, with the in situ measurements suggesting the tunable conductivity type and level by contacting with different Au configurations. For interpreting the experimental observations, the first-principles approach is used to simulate the interaction within graphene-Au systems. The results suggest that, different doping properties of Au-graphene systems are induced by the chemical interactions between graphene and the different Au configurations (isolated nanoparticle and continuous film).


Assuntos
Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Nanotecnologia
12.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893530

RESUMO

Microstructural control during the solution processing of small-molecule semiconductors (namely, soluble acene) is important for enhancing the performance of field-effect transistors (FET) and sensors. This focused review introduces strategies to enhance the gas-sensing properties (sensitivity, recovery, selectivity, and stability) of soluble acene FET sensors by considering their sensing mechanism. Defects, such as grain boundaries and crystal edges, provide diffusion pathways for target gas molecules to reach the semiconductor-dielectric interface, thereby enhancing sensitivity and recovery. Representative studies on grain boundary engineering, patterning, and pore generation in the formation of soluble acene crystals are reviewed. The phase separation and microstructure of soluble acene/polymer blends for enhancing gas-sensing performance are also reviewed. Finally, flexible gas sensors using soluble acenes and soluble acene/polymer blends are introduced, and future research perspectives in this field are suggested.

13.
ACS Nano ; 16(2): 2176-2187, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35112565

RESUMO

Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10-15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.

14.
J Am Chem Soc ; 133(12): 4447-54, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21381751

RESUMO

Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.


Assuntos
Grafite/química , Membranas Artificiais , Naftacenos/química , Semicondutores , Eletrodos , Tamanho da Partícula , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 13(27): 31910-31918, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197091

RESUMO

Conjugated polymers (CPs) have provided versatile semiconducting implements for the development of soft electronic devices. When three CPs with the same conjugated framework but different side chains were adopted in the field-effect transistor (FET) sensor for NO2 detection, the response to NO2 showed an opposite tendency to the charge carrier mobility of each CP. Morphological and structural characterizations revealed that the flexible glycol side chain enhances NO2 affinity as well as prevents the formation of lamellar stacking of the CP chains, thereby providing routes for the facile diffusion of NO2. Additionally, theoretical calculations for CP-NO2 complex formation at the molecular level support the relatively low energy barrier for inter-chain transition of NO2 between the glycol-based conjugated frameworks, which implies the spontaneous internal diffusion of NO2 to the semiconductor-dielectric interface in the FET-based sensor. As a result, the CP with a NO2-affinitive morphology exhibited an exceptional sensitivity of 13.8%/ppb upon NO2 (100 ppb) exposure for 50 s and provided excellent selectivity to the FET-based sensor toward other environmentally abundant harmful gases, such as SO2, CO2, and NH3. In particular, the theoretic limit of detection reached down to 0.24 ppb, which is the lowest value ever reported for organic FET-based NO2 gas sensors.

16.
ACS Appl Mater Interfaces ; 12(49): 55493-55500, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33233877

RESUMO

Surface modification layer of a silicon substrate has been used to enhance the performance of graphene field-effect transistors (FETs). In this report, ultrathin and chemically robust polymer brush was used as a surface modification to enhance the gas sensing properties of graphene FETs. The insertion of the polymer brush decreased substrate-induced doping of graphene. This leads to a huge increase in field-effect mobility as well as a minimum shift of the Dirac point voltage. The use of the polymer brush enables fast detection of target gas molecules because graphene sensing modality can be maximized at the undoped state of graphene. The increase of source-drain current, as well as the abrupt decrease of electron mobility upon NO2 exposure, was utilized for the instantaneous detection, and a limit of detection of 4.8 ppb was achieved with graphene FETs on PS brush. We also showed excellent cross-sensitivity of graphene gas sensors to NH3, CO2, and relative humidity condition; the source-drain current decreases upon NH3 exposure, while response to CO2 or relative humidity condition is extremely low. Our results prove that reducing the substrate-induced doping of graphene with a polymer brush is a direct method for boosting the gas sensing properties of graphene FETs.

17.
J Am Chem Soc ; 131(17): 6124-32, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19354240

RESUMO

The ability to control the molecular organization of electronically active liquid-crystalline polymer semiconductors on surfaces provides opportunities to develop easy-to-process yet highly ordered supramolecular systems and, in particular, to optimize their electrical and environmental reliability in applications in the field of large-area printed electronics and photovoltaics. Understanding the relationship between liquid-crystalline nanostructure and electrical stability on appropriate molecular surfaces is the key to enhancing the performance of organic field-effect transistors (OFETs) to a degree comparable to that of amorphous silicon (a-Si). Here, we report a novel donor-acceptor type liquid-crystalline semiconducting copolymer, poly(didodecylquaterthiophene-alt-didodecylbithiazole), which contains both electron-donating quaterthiophene and electron-accepting 5,5'-bithiazole units. This copolymer exhibits excellent electrical characteristics such as field-effect mobilities as high as 0.33 cm(2)/V.s and good bias-stress stability comparable to that of amorphous silicon (a-Si). Liquid-crystalline thin films with structural anisotropy form spontaneously through self-organization of individual polymer chains as a result of intermolecular interactions in the liquid-crystalline mesophase. These thin films adopt preferential well-ordered intermolecular pi-pi stacking parallel to the substrate surface. This bottom-up assembly of the liquid-crystalline semiconducting copolymer enables facile fabrication of highly ordered channel layers with remarkable electrical stability.


Assuntos
Polímeros/química , Semicondutores , Substâncias Macromoleculares/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Transistores Eletrônicos
18.
Sci Rep ; 9(1): 21, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631121

RESUMO

Blending organic semiconductors with insulating polymers has been known to be an effective way to overcome the disadvantages of single-component organic semiconductors for high-performance organic field-effect transistors (OFETs). We show that when a solution processable organic semiconductor (6,13-bis(triisopropylsilylethynyl)pentacene, TIPS-pentacene) is blended with an insulating polymer (PS), morphological and structural characteristics of the blend films could be significantly influenced by the processing conditions like the spin coating time. Although vertical phase-separated structures (TIPS-pentacene-top/PS-bottom) were formed on the substrate regardless of the spin coating time, the spin time governed the growth mode of the TIPS-pentacene molecules that phase-separated and crystallized on the insulating polymer. Excess residual solvent in samples spun for a short duration induces a convective flow in the drying droplet, thereby leading to one-dimensional (1D) growth mode of TIPS-pentacene crystals. In contrast, after an appropriate spin-coating time, an optimum amount of the residual solvent in the film led to two-dimensional (2D) growth mode of TIPS-pentacene crystals. The 2D spherulites of TIPS-pentacene are extremely advantageous for improving the field-effect mobility of FETs compared to needle-like 1D structures, because of the high surface coverage of crystals with a unique continuous film structure. In addition, the porous structure observed in the 2D crystalline film allows gas molecules to easily penetrate into the channel region, thereby improving the gas sensing properties.

19.
Polymers (Basel) ; 9(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30965741

RESUMO

Inkjet printing techniques for the etching of polymers and their application to the fabrication of organic electronic devices are reviewed. A mechanism is proposed for the formation of via holes in polymer layers through inkjet printing with solvent, and recent achievements in the fabrication with inkjet etching of various three-dimensional microstructures (i.e., microwells, microgrooves, hexagonal holes, and concave structures) are discussed. In addition, organic electronic devices are presented that use inkjet-etched subtractive patterns as platforms for the selective depositions of an emissive material, a liquid crystal, an organic conductor, an organic insulator, and an organic semiconductor, and as an optical waveguide.

20.
ACS Appl Mater Interfaces ; 9(4): 3857-3864, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28032754

RESUMO

One-dimensional (1D) nano/microwires have attracted considerable attention as versatile building blocks for use in diverse electronic, optoelectronic, and magnetic device applications. The large-area assembly of nano/microwires at desired positions presents a significant challenge for developing high-density electronic devices. Here, we demonstrated the fabrication of cross-stacked pn heterojunction diode arrays by integrating well-aligned inorganic and organic microwires fabricated via evaporative assembly. We utilized solution-processed n-type inorganic indium-gallium-zinc-oxide (IGZO) microwires and p-type organic 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-PEN) microwires. The formation of organic TIPS-PEN semiconductor microwire and their electrical properties were optimized by controlling both the amounts of added insulating polymer and the widths of the microwires. The resulting cross-stacked IGZO/TIPS-PEN microwire pn heterojunction devices exhibited rectifying behavior with a forward-to-reverse bias current ratio exceeding 102. The ultrathin nature of the underlying n-type IGZO microwires yielded gate tunability in the charge transport behaviors, ranging from insulating to rectifying. The rectifying behaviors of the heterojunction devices could be modulated by controlling the optical power of the irradiated light. The fabrication of semiconducting microwires through evaporative assembly provides a facile and reliable approach to patterning or positioning 1D microwires for the fabrication of future flexible large-area electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA