Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Acc Chem Res ; 51(5): 988-998, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29664613

RESUMO

Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of clinically relevant modes of operation in animal models. This Account highlights the foundational materials concepts for this area of technology, starting with the dissolution chemistry and reaction kinetics associated with hydrolysis of Si NMs as a function of temperature, pH, and ion and protein concentration. A following discussion focuses on key supporting materials, including a range of dielectrics, metals, and substrates. As comparatively low performance alternatives to Si NMs, bioresorbable organic semiconductors are also presented, where interest derives from their intrinsic flexibility, low-temperature processability, and ease of chemical modification. Representative examples of encapsulation materials and strategies in passive and active control of device lifetime are then discussed, with various device illustrations. A final section outlines bioresorbable electronics for sensing of various biophysical parameters, monitoring electrophysiological activity, and delivering drugs in a programmed manner. Fundamental research in chemistry remains essential to the development of this emerging field, where continued advances will increase the range of possibilities in sensing, actuation, and power harvesting. Materials for encapsulation layers that can delay water-diffusion and dissolution of active electronics in passively or actively triggered modes are particularly important in addressing areas of opportunity in clinical medicine, and in secure systems for envisioned military and industrial uses. The deep scientific content and the broad range of application opportunities suggest that research in transient electronic materials will remain a growing area of interest to the chemistry community.


Assuntos
Materiais Biocompatíveis/química , Nanoestruturas/química , Polímeros/química , Silício/química , Implantes Absorvíveis , Animais , Equipamentos e Provisões Elétricas , Eletrônica/instrumentação , Eletrônica/métodos , Ratos , Semicondutores , Solubilidade
2.
Nanotechnology ; 29(36): 365202, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29920183

RESUMO

The ovonic threshold switch (OTS) based on the voltage snapback of amorphous chalcogenides possesses several desirable characteristics: bidirectional switching, a controllable threshold voltage (V th) and processability for three-dimensional stackable devices. Among the materials that can be used as OTS, GeSe has a strong glass-forming ability (∼350 °C crystallization temperature), with a simple binary composition. Described herein is a new method of depositing GeSe films through atomic layer deposition (ALD), using HGeCl3 and [(CH3)3Si]2Se as Ge and Se precursors, respectively. The stoichiometric GeSe thin films were formed through a ligand exchange reaction between the two precursor molecules, without the adoption of an additional reaction gas, at low substrate temperatures ranging from 70 °C-150 °C. The pseudo-saturation behavior required a long time of Ge precursor injection to achieve the saturation growth rate. This was due to the adverse influence of the physisorbed precursor and byproduct molecules on the efficient chemical adsorption reaction between the precursors and reaction sites. To overcome the slow saturation and excessive use of the Ge precursor, the discrete feeding method (DFM), where HGeCl3 is supplied multiple times consecutively with subdivided pulse times, was adopted. DFM led to the saturation of the GeSe growth rate at a much shorter total injection time of the Ge precursor, and improved the film density and oxidation resistance properties. The GeSe film grown via DFM exhibited a short OTS time of ∼40 ns, a ∼107 ON/OFF current ratio, and ∼104 selectivity. The OTS behavior was consistent with the modified Poole-Frenkel mechanism in the OFF state. In contrast, the similar GeSe film grown through the conventional ALD showed a low density and high vulnerability to oxidation, which prevented the OTS performance. The ALD method of GeSe films introduced here will contribute to the fabrication of a three-dimensionally integrated memory as a selector device for preventing sneak current.

3.
Adv Funct Mater ; 9(3)2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28989338

RESUMO

A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements.

4.
Dalton Trans ; 51(2): 594-601, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904602

RESUMO

This study introduces the atomic layer deposition (ALD) of tin selenide thin films using Sn(N(CH3)2)4 and Se(Si(CH3)3)2 with NH3 co-injection. The co-injection of NH3 with Se(Si(CH3)3)2 is essential for film growth to convert the precursor into a more reactive form. The most critical feature of this specific ALD process is that the chemical composition (Sn/Se ratio) could be varied by changing the growth temperature, even for the given precursor injection conditions. The composition and morphology of the deposited films varied depending on the process temperature. Below 150 °C, a uniform SnSe2 thin film was deposited in an amorphous phase, maintaining the oxidation states of its precursors. Above 170 °C, the composition of the film changed to 1 : 1 stoichiometry due to the crystallization of SnSe and desorption of Se. A two-step growth sequence involving a low-temperature seed layer was devised for the high-temperature ALD of SnSe to improve surface roughness.

5.
ACS Appl Mater Interfaces ; 12(20): 23110-23118, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32345012

RESUMO

An ovonic threshold switch (OTS) based on amorphous chalcogenide materials possesses several desirable characteristics, including high selectivity and fast switching speed, enabling the fabrication of one selector-one resistor (1S-1R) crossbar array (CBA) for random access memory. Among the several chalcogenide materials, GeSe offers high selectivity and a strong glass-forming ability with environment-friendly, simple binary composition. In this report, the GeSe thin films were deposited via atomic layer deposition (ALD) using Ge(N(Si(CH3)3)2)2 and ((CH3)3Si)2Se for its envisioned application in fabricating three-dimensional vertical-type phase-change memory. Highly conformal GexSe1-x films were obtained at a substrate temperature ranging from 70 to 160 °C. The unique deposition mechanism that involves Ge intermediates provided a way to modulate the composition of the Ge-Se films from 5:5 to 7:3. Low threshold voltages ranging from 1.2 to 1.4 V were observed depending on the composition. A cycling endurance of more than 106 was achieved with the Ge0.6Se0.4 composition with 104 half-bias nonlinearity. This work presents the foundations for the future development of vertical-type 1S-1R arrays when combined with the ALD technique for Ge2Sb2Te5 phase-change materials.

6.
Micromachines (Basel) ; 10(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067708

RESUMO

Recent advances in nanoscale resistive memory devices offer promising opportunities for in-memory computing with their capability of simultaneous information storage and processing. The relationship between current and memory conductance can be utilized to perform matrix-vector multiplication for data-intensive tasks, such as training and inference in machine learning and analysis of continuous data stream. This work implements a mapping algorithm of memory conductance for matrix-vector multiplication using a realistic crossbar model with finite cell-to-cell resistance. An iterative simulation calculates the matrix-specific local junction voltages at each crosspoint, and systematically compensates the voltage drop by multiplying the memory conductance with the ratio between the applied and real junction potential. The calibration factors depend both on the location of the crosspoints and the matrix structure. This modification enabled the compression of Electrocardiographic signals, which was not possible with uncalibrated conductance. The results suggest potential utilities of the calibration scheme in the processing of data generated from mobile sensing or communication devices that requires energy/areal efficiencies.

7.
ACS Appl Mater Interfaces ; 11(50): 47063-47072, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31741373

RESUMO

The thin-film growth conditions in a plasma-enhanced atomic layer deposition for the (3.0-4.5) nm thick HfO2 film were optimized to use the film as the resistive switching element in a neuromorphic circuit. The film was intended to be used as a feasible synapse with analog-type conductance-tuning capability. The 4.5 nm thick HfO2 films on both conventional TiN and a new RuO2 bottom electrode required the electroforming process for them to operate as a feasible resistive switching memory, which was the primary source of the undesirable characteristics as the synapse. Therefore, electroforming-free performance was necessary, which could be accomplished by thinning the HfO2 film down to 3.0 nm. However, the device with only the RuO2 bottom electrode offered the desired functionality without involving too high leakage or shorting problems, which are due to the recovery of the stoichiometric composition of the HfO2 near the RuO2 layer. In conjunction with the Ta top electrode, which provided the necessary oxygen vacancies to the HfO2 layer, and the high functionality of the RuO2 as the scavenger of excessive incorporated oxygen vacancies, which appeared to be inevitable during the repeated switching operation, the Ta/3.0 nm HfO2/RuO2 provided a highly useful synaptic device component in the neuromorphic hardware system.

8.
ACS Appl Mater Interfaces ; 11(42): 38910-38920, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31550128

RESUMO

Chalcogenide materials have been regarded as strong candidates for both resistor and selector elements in passive crossbar arrays owing to their dual capabilities of undergoing threshold and resistance switching. This work describes the bipolar resistive switching (BRS) of amorphous GeSe thin films, which used to show Ovonic threshold switching (OTS) behavior. The behavior of this new functionality of the material follows filament-based resistance switching when Ti and TiN are adopted as the top and bottom electrodes, respectively. The detailed analysis revealed that the high chemical affinity of Ti to Se produces a Se-deficient GexSe1-x matrix and the interfacial Ti-Se layer. Electroforming-free BRS behavior with reliable retention and cycling endurance was achieved. The performance improvement was attributed to the Ti-Se interfacial layer, which stabilizes the composition of GeSe during the electrical switching cycles by preventing further massive Se migration to the top electrode. The conduction mechanism analysis denotes that the resistance switching originates from the formation and rupture of the high-conductance semiconducting Ge-rich GexSe1-x filament. The high-resistance state follows the modified Poole-Frenkel conduction.

9.
Nat Biomed Eng ; 3(1): 37-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932064

RESUMO

Pressures in the intracranial, intraocular and intravascular spaces are clinically useful for the diagnosis and management of traumatic brain injury, glaucoma and hypertension, respectively. Conventional devices for measuring these pressures require surgical extraction after a relevant operational time frame. Bioresorbable sensors, by contrast, eliminate this requirement, thereby minimizing the risk of infection, decreasing the costs of care and reducing distress and pain for the patient. However, the operational lifetimes of bioresorbable pressure sensors available at present fall short of many clinical needs. Here, we present materials, device structures and fabrication procedures for bioresorbable pressure sensors with lifetimes exceeding those of previous reports by at least tenfold. We demonstrate measurement accuracies that compare favourably to those of the most sophisticated clinical standards for non-resorbable devices by monitoring intracranial pressures in rats for 25 days. Assessments of the biodistribution of the constituent materials, complete blood counts, blood chemistry and magnetic resonance imaging compatibility confirm the biodegradability and clinical utility of the device. Our findings establish routes for the design and fabrication of bioresorbable pressure monitors that meet requirements for clinical use.


Assuntos
Implantes Absorvíveis , Doença Crônica , Pressão Intracraniana , Monitorização Fisiológica/instrumentação , Dióxido de Silício/química , Temperatura , Cicatrização , Animais , Feminino , Cinética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Ratos Endogâmicos Lew , Distribuição Tecidual
10.
ACS Appl Mater Interfaces ; 10(10): 8836-8844, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29468873

RESUMO

The atomic layer deposition (ALD) of multication oxide films is complicated because the deposition behaviors of the component oxides are not independent of one another. In this study, the Ti and Sr atom incorporation behaviors during the ALD of SrTiO3 films were quantitatively examined via the carefully designed ALD process sequences. H2O and O3 were adopted as the oxygen sources of the SrO subcycles, whereas only O3 was used for the TiO2 ALD subcycles. Apart from the general conjecture on the roles of the different types of oxygen sources, the oxygen source that was adopted for the subcycles of the other component oxide had almost complete control of the metal atom incorporation behaviors. This means that the first half-cycle of ALD played a dominant role in determining the metal incorporation rate, which revealed the critical role of the steric hindrance effect during the metal precursor injection for the ALD rate. O3 had almost doubled its reactivity toward the Ti and Sr precursors compared with H2O. Although these are the expected results from the common knowledge on ALD, the quantitative analysis of the incorporation behaviors of each metal atom provided insightful viewpoints for the ALD process of this technically important oxide material. Furthermore, the SrTiO3 films with a bulk dielectric constant as high as 236 were obtained by the Ru-SrTiO3-RuO2 capacitor structure.

11.
ACS Nano ; 12(10): 10317-10326, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30281278

RESUMO

Biomedical implants that incorporate active electronics and offer the ability to operate in a safe, stable fashion for long periods of time must incorporate defect-free layers as barriers to biofluid penetration. This paper reports an engineered material approach to this challenge that combines ultrathin, physically transferred films of silicon dioxide (t-SiO2) thermally grown on silicon wafers, with layers of hafnium oxide (HfO2) formed by atomic layer deposition and coatings of parylene (Parylene C) created by chemical vapor deposition, as a dual-sided encapsulation structure for flexible bioelectronic systems. Accelerated aging tests on passive/active components in platforms that incorporate active, silicon-based transistors suggest that this trilayer construct can serve as a robust, long-lived, defect-free barrier to phosphate-buffered saline (PBS) solution at a physiological pH of 7.4. Reactive diffusion modeling and systematic immersion experiments highlight fundamental aspects of water diffusion and hydrolysis behaviors, with results that suggest lifetimes of many decades at physiological conditions. A combination of ion-diffusion tests under continuous electrical bias, measurements of elemental concentration profiles, and temperature-dependent simulations reveals that this encapsulation strategy can also block transport of ions that would otherwise degrade the performance of the underlying electronics. These findings suggest broad utility of this trilayer assembly as a reliable encapsulation strategy for the most demanding applications in chronic biomedical implants and high-performance flexible bioelectronic systems.


Assuntos
Técnicas Biossensoriais , Háfnio/química , Óxidos/química , Polímeros/química , Dióxido de Silício/química , Água/química , Xilenos/química , Técnicas Biossensoriais/instrumentação , Eletrônica , Íons/química , Volatilização
12.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833596

RESUMO

This study describes a conductive ink formulation that exploits electrochemical sintering of Zn microparticles in aqueous solutions at room temperature. This material system has relevance to emerging classes of biologically and environmentally degradable electronic devices. The sintering process involves dissolution of a surface passivation layer of zinc oxide in CH3 COOH/H2 O and subsequent self-exchange of Zn and Zn2+ at the Zn/H2 O interface. The chemical specificity associated with the Zn metal and the CH3 COOH/H2 O solution is critically important, as revealed by studies of other material combinations. The resulting electrochemistry establishes the basis for a remarkably simple procedure for printing highly conductive (3 × 105 S m-1 ) features in degradable materials at ambient conditions over large areas, with key advantages over strategies based on liquid phase (fusion) sintering that requires both oxide-free metal surfaces and high temperature conditions. Demonstrations include printed magnetic loop antennas for near-field communication devices.

13.
ACS Appl Mater Interfaces ; 9(49): 42633-42638, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29178781

RESUMO

Flexible electronic systems for bioimplants that offer long-term (multidecade) stability and safety in operation require thin, biocompatible layers that can prevent biofluid penetration. Recent work shows that ultrathin films of silicon dioxide thermally grown (TG-SiO2) on device-grade silicon wafers and then released as transferrable barriers offer a remarkable set of attributes in this context. This paper examines the chemical stability of these materials in aqueous solutions with different combinations of chemistries that are present in biofluids. Systematic measurements reveal the dependence of the dissolution rate of TG-SiO2 on concentrations of cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, HPO42-) at near-neutral pH. Certain results are consistent with previous studies on bulk samples of quartz and nanoparticles of amorphous silica; others reveal significant catalyzing effects associated with divalent cations at high pH and with specific anions at high ionic strength. In particular, Ca2+ and HPO42- greatly enhance and silicic acid greatly reduces the rates. These findings establish foundational data of relevance to predicting lifetimes of implantable devices that use TG-SiO2 as biofluid barriers, and of other classes of systems, such as environmental monitors, where encapsulation against water penetration is important.

14.
ACS Nano ; 11(12): 12562-12572, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29178798

RESUMO

The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH)4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.


Assuntos
Eletrônica , Nanopartículas/química , Silício/química , Água/química , Cristalização , Eletricidade , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA