RESUMO
Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.
Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas MultifuncionaisRESUMO
Stem cells are an important therapeutic source for recovery and regeneration, as their ability of self-renewal and differentiation offers an unlimited supply of highly specialized cells for therapeutic transplantation. Growth factors and serum are essential for maintaining the characteristics of stem cells in culture and for inducing differentiation. Because growth factors are produced mainly in bacterial (Escherichia coli) or animal cells, the use of such growth factors raises safety concerns that need to be resolved for the commercialization of stem cell therapeutics. To overcome this problem, studies on proteins produced in plants have been conducted. Here, we describe the functions of plant-derived fibroblast growth factor 2 (FGF2) and human serum albumin in the maintenance and differentiation of human-induced pluripotent stem cells (hiPSCs). Plant-derived FGF2 and human epidermal growth factor EGF were able to differentiate hiPSCs into neural stem cells (NSCs). These NSCs could differentiate into neuronal and glial cells. Our results imply that culturing stem cells in animal-free culture medium, which is composed of plant-derived proteins, would facilitate stem cell application research, for example, for cell therapy, by reducing contamination risk.
Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Albumina Sérica Humana/farmacologia , Animais , Linhagem Celular , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacologia , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neurais/metabolismo , Oryza/genética , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/farmacologia , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismoRESUMO
A human induced pluripotent stem cell (iPSC) line (KKUi002-A) was generated from a skin fibroblast of a 57-years-old (at sampling) male patient diagnosed with a sporadic Parkinson's disease (PD). A non-integration system was used to reprogram fibroblasts into iPSCs by an episomal vector (OCT4/p53, SOX2/KLF4, L-MYC/LIN28). The KKUi002-A iPSCs displayed typical iPSC morphology, expressed pluripotency markers, differentiated into derivatives of three germ layers, and had a normal karyotype. These PD-derived iPSCs can be used to understand the mechanism underlying PD pathogenesis.
Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 4 Semelhante a Kruppel , Doença de Parkinson , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/patologia , Masculino , Pessoa de Meia-Idade , Diferenciação Celular , Fibroblastos/metabolismo , Fibroblastos/patologia , Reprogramação Celular , Linhagem CelularRESUMO
Myofibrillar myopathy 6 (MFM6) is a rare childhood-onset myopathy characterized by myofibrillar disintegration, muscle weakness, and cardiomyopathy. The genetic cause of MFM6 is p.Pro209Leu mutation (rs121918312-T) in the BAG3 gene, which generates the disease outcomes in a dominant fashion. Since the consequences of the BAG3 mutation are strong and rapidly progressing, most MFM6 patients are due to de novo mutation. There are no effective treatments for MFM6 despite its well-known genetic cause. Given p.Pro209Leu mutation is dominant, regenerative medicine approaches employing orthologous stem cells in which mutant BAG3 is inactivated offer a promising avenue. Here, we developed personalized allele-specific CRISPR-Cas9 strategies capitalizing on PAM-altering SNP and PAM-proximal SNP. In order to identify the disease chromosome carrying the de novo mutation in our two affected individuals, haplotype phasing through cloning-sequencing was performed. Based on the sequence differences between mutant and normal BAG3, we developed personalized allele-specific CRISPR-Cas9 strategies to selectively inactivate the mutant allele 1) by preventing the transcription of the mutant BAG3 and 2) by inducing nonsense-mediated decay (NMD) of mutant BAG3 mRNA. Subsequent experimental validation in patient-derived induced pluripotent stem cell (iPSC) lines showed complete allele specificities of our CRISPR-Cas9 strategies and molecular consequences attributable to inactivated mutant BAG3. In addition, mutant allele-specific CRISPR-Cas9 targeting did not alter the characteristics of iPSC or the capacity to differentiate into cardiomyocytes. Together, our data demonstrate the feasibility and potential of personalized allele-specific CRISPR-Cas9 approaches to selectively inactivate the mutant BAG3 to generate cell resources for regenerative medicine approaches for MFM6.
RESUMO
Huntington's disease (HD), due to expansion of a CAG repeat in HTT , is representative of a growing number of disorders involving somatically unstable short tandem repeats. We find that overlapping and distinct genetic modifiers of clinical landmarks and somatic expansion in blood DNA reveal an underlying complexity and cell-type specificity to the mismatch repair-related processes that influence disease timing. Differential capture of non-DNA-repair gene modifiers by multiple measures of cognitive and motor dysfunction argues additionally for cell-type specificity of pathogenic processes. Beyond trans modifiers, differential effects are also illustrated at HTT by a 5'-UTR variant that promotes somatic expansion in blood without influencing clinical HD, while, even after correcting for uninterrupted CAG length, a synonymous sequence change at the end of the CAG repeat dramatically hastens onset of motor signs without increasing somatic expansion. Our findings are directly relevant to therapeutic suppression of somatic expansion in HD and related disorders and provide a route to define the individual neuronal cell types that contribute to different HD clinical phenotypes.
RESUMO
Neural stem cells (NSCs) are defined by their ability to self-renew and generate various cell types within the nervous system. Understanding the underlying mechanism by which NSCs proliferate and differentiate is crucial for the efficient modulation of in vivo neurogenesis. MicroRNAs are small non-coding RNAs controlling gene expression concerned in post-transcriptional control by blocking messenger RNA (mRNA) translation or degrading mRNA. MicroRNAs play a role as modulators by matching target mRNAs. Recent studies have discussed the biological mechanism of microRNA regulation in neurogenesis. To investigate the role of microRNAs in NSCs and NSC-derived glial cells, we screened out NSC-specific microRNAs by using miRNome-wide screening. Then, we induced downregulation by the sponge against the specific microRNA to evaluate the functional role of the microRNA in proliferation, differentiation, and apoptosis in NSCs and NSC-derived astrocytes. We found that microRNA-325-3p is highly expressed in NSCs and astrocytes. Furthermore, we showed that microRNA-325-3p is a regulator of apoptosis by targeting brain-specific angiogenesis inhibitor (BAI1), which is a receptor for apoptotic cells and expressed in the brain and cultured astrocytes. Downregulation of microRNA-325-3p using an inducible sponge system induced cell death by regulating BAI1 in NSCs and NSC-derived astrocytes. Overall, our findings can provide an insight into the potential roles of NSC-specific microRNAs in brain neurogenesis and suggest the possible usage of the microRNAs as biomarkers of neurodegenerative disease.
RESUMO
Background and Objectives: Spermatogonial stem cells (SSCs) are the most primitive cells in spermatogenesis and are the only adult stem cells capable of passing on the genome of a given species to the next generation. SSCs are the only adult stem cells known to exhibit high Oct4 expression and can be induced to self-reprogram into pluripotent cells depending on culture conditions. Epigenetic modulation is well known to be involved in the induction of pluripotency of somatic cells. However, epigenetic modulation in self-reprogramming of SSCs into pluripotent cells has not been studied. Methods and Results: In this study, we examined the involvement of epigenetic modulation by assessing whether self-reprogramming of SSCs is enhanced by treatment with epigenetic modulators. We found that second-generation selective class I HDAC inhibitors increased SSC reprogramming efficiency, whereas non-selective HDAC inhibitors had no effect. Conclusions: We showed that pluripotent stem cells derived from adult SSCs by treatment with small molecules with epigenetic modulator functions exhibit pluripotency in vitro and in vivo. Our results suggest that the mechanism of SSC reprogramming by epigenetic modulator can be used for important applications in epigenetic reprogramming research.
RESUMO
In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.
Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Reprogramação Celular , Células-Tronco Embrionárias Murinas , Epigênese GenéticaRESUMO
Umbilical cord blood (UCB) is an alternative source of allogeneic hematopoietic stem cells (HSCs) for transplantation to treat various hematological disorders. The major limitation to the use of UCB-derived HSCs (UCB-HSCs) in transplantation, however, is the low numbers of HSCs in a unit of cord blood. To overcome this limitation, various cytokines or small molecules have been used to expand UCB-HSCs ex vivo. In this study, we investigated a synergistic effect of the combination of HIL-6, SR1, and UM171 on UCB-HSC culture and found that this combination resulted in the highest number of CD34+ cells. These results suggest that the combination of SR1, UM171 and HIL-6 exerts a synergistic effect in the proliferation of HSCs from UCB and thus, SR1, UM171 and HIL-6 is the most suitable combination for obtaining HSCs from UCB for clinical transplantation.
RESUMO
OCT4 and NANOG are core transcription factor genes in self-renewal, differentiation, and reprogramming. Here, we generated an OCT4-EGFP, NANOG-tdTomato dual reporter hiPSC line, KKUi001-A, on the basis of human induced pluripotent stem cells using CRISPR/Cas9 technology. EGFP and tdTomato reporter were inserted into before the stop codon of OCT4 and NANOG, respectively. Simultaneous expression of EGFP and tdTomato was observed when expression of OCT4 and NANOG was changed during differentiation and reprogramming. KKUi001-A hiPSC line will be a useful tool to find initial time point of OCT4 and NANOG expression during reprogramming process and to screen small molecules that promote reprogramming.
Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Reprogramação Celular , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Luminescentes , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína Vermelha FluorescenteRESUMO
Spermatogonial stem cells (SSCs) are unipotent adult stem cells, capable of differentiating into sperm cells. SSCs can be cultured in vitro for a long time. SSCs expressing Oct4, a pluripotency marker, and are the only adult cells which pluripotency can be induced under defined culture conditions. However, because 2D culture imposes limitations in cell junction formation, cell shape, metabolism, response to stimuli, and cell interface with medium, mechanistic studies on reprogramming of SSCs using feeder cells still have many challenges. Recent studies have shown that a culture system using a bio-matrix can be used in long-term feeder-free SSCs culture and for induction of pluripotency in SSCs. However, the bio-matrix cannot be the optimal micro-environment in mechanistic studies because it creates a physical barrier to growth factors and other signaling molecules. To overcome this effect of the matrix, we reprogrammed SSCs into pluripotent ESC-like cells, so-called germline-derived pluripotent stem cells (gPSCs) by using a 3D scaffold, in which cells are less responsive to external stimuli than in 2D cultures. Thus, we confirm the possibility of SSC reprogramming in the spheroidal state and suggest the utility of 3D scaffolds as a tool for studying the mechanism of SSC reprogramming into gPSCs without a bio-matrix.
RESUMO
BACKGROUND AND OBJECTIVES: Genomic imprinting modulates growth and development in mammals and is associated with genetic disorders. Although uniparental embryonic stem cells have been used to study genomic imprinting, there is an ethical issue associated with the destruction of human embryos. In this study, to investigate the genomic imprinting status in human neurodevelopment, we used human uniparental induced pluripotent stem cells (iPSCs) that possessed only maternal alleles and differentiated into neural cell lineages. METHODS: Human somatic iPSCs (hSiPSCs) and human parthenogenetic iPSCs (hPgiPSCs) were differentiated into neural stem cells (NSCs) and named hSi-NSCs and hPgi-NSCs respectively. DNA methylation and gene expression of imprinted genes related neurodevelopment was analyzed during reprogramming and neural lineage differentiation. RESULTS: The DNA methylation and expression of imprinted genes were altered or maintained after differentiation into NSCs. The imprinting status in NSCs were maintained after terminal differentiation into neurons and astrocytes. In contrast, gene expression was differentially presented in a cell type-specific manner. CONCLUSIONS: This study suggests that genomic imprinting should be determined in each neural cell type because the genomic imprinting status can differ in a cell type-specific manner. In addition, the in vitro model established in this study would be useful for verifying the epigenetic alteration of imprinted genes which can be differentially changed during neurodevelopment in human and for screening novel imprinted genes related to neurodevelopment. Moreover, the confirmed genomic imprinting status could be used to find out an abnormal genomic imprinting status of imprinted genes related with neurogenetic disorders according to uniparental genotypes.
RESUMO
Oligodendrocyte progenitor cells (OPCs) are attracting attention as the ideal cell therapy for spinal cord injury (SCI). Recently, advanced reprogramming and differentiation techniques have made it possible to generate therapeutic cells for treating SCI. In the present study, we used directly-induced neural stem cells (DNSCs) from fibroblasts to establish OPCs (DN-OPCs) capable of proliferation and confirmed their OPC-specific characteristics. Also, we evaluated the effect of transplanted DN-OPCs on SCI in rats. The DN-OPCs exhibited an OPC-specific phenotype and electrophysiological function and could be differentiated into oligodendrocytes. In the SCI model, transplanted DN-OPCs improved behavior recovery, and showed engraftment into the host spinal cord with expression of myelin basic protein. These results suggest that DN-OPCs could be a new source of potentially useful cells for treating SCI.
RESUMO
Spermatogonial stem cells (SSCs) derived from mouse testis are unipotent in regard of spermatogenesis. Our previous study demonstrated that SSCs can be fully reprogrammed into pluripotent stem cells, so called germline-derived pluripotent stem cells (gPS cells), on feeder cells (mouse embryonic fibroblasts), which supports SSC proliferation and induction of pluripotency. Because of an uncontrollable microenvironment caused by interactions with feeder cells, feeder-based SSC reprogramming is not suitable for elucidation of the self-reprogramming mechanism by which SSCs are converted into pluripotent stem cells. Recently, we have established a Matrigel-based SSC expansion culture system that allows long-term SSC proliferation without mouse embryonic fibroblast support. In this study, we developed a new feeder-free SSC self-reprogramming protocol based on the Matrigel-based culture system. The gPS cells generated using a feeder-free reprogramming system showed pluripotency at the molecular and cellular levels. The differentiation potential of gPS cells was confirmed in vitro and in vivo. Our study shows for the first time that the induction of SSC pluripotency can be achieved without feeder cells. The newly developed feeder-free self-reprogramming system could be a useful tool to reveal the mechanism by which unipotent cells are self-reprogrammed into pluripotent stem cells.
Assuntos
Microambiente Celular , Reprogramação Celular/genética , Células Alimentadoras/citologia , Células-Tronco Pluripotentes/citologia , Espermatogônias/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Microambiente Celular/genética , Quimera/metabolismo , Análise Citogenética , Metilação de DNA/genética , Células Alimentadoras/metabolismo , Perfilação da Expressão Gênica , Impressão Genômica/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Pluripotentes/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espermatogônias/metabolismoRESUMO
Animal models and human studies showed that in utero cigarette smoke exposure decreases sperm counts of offspring. This study used a mouse model to investigate the effects of maternal exposure to cigarette smoke on reproductive systems in F1 and F2 male offspring. Female ICR mice were exposed either to clean air or to cigarette smoke during pregnancy at the post-implantation stage. Epididymal sperm counts were decreased in a cigarette smoke dose-dependent manner in F1 (by 40-60%) and F2 males (by 23-40%) at postnatal day 56. In F1, the seminiferous epithelium heights were lower in the cigarette smoke-exposed groups than in the control group, and these effects were sustained in F2 males. Results suggest that maternal cigarette smoke exposure during pregnancy can have a multigenerational adverse effect on sperm counts in male offspring, which is mediated through in utero exposure of fetal germ cells to cigarette smoke.