Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NanoImpact ; 142019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32818159

RESUMO

As nanomaterials are used in a wide array of applications, investigations regarding health impacts associated with inhalation are a concern. Reports show that exposure to single-walled carbon nanotubes (SWCNTs) can induce fibrosis, allergic-type reactions, and pathogen susceptibility. Airway clearance is known to play a primary role in these disease states, yet SWCNT detection in biological systems is challenging. Common techniques, such as electron microscopy, lack spatial resolution and specificity to delineate SWCNTs in carbon-based organisms. Here we validated a near-infrared fluorescence imaging (NIRFI) system to track and semi-quantify SWCNTs over 21 days in tissues of mice exposed intratracheally to 1 dose of SWCNTs. In tandem, we optimized a NIRF-based spectrometry method to quantify SWCNTs, showing that NIRFI was consistent with SWCNT burdens quantified by NIRF spectroscopy in whole lung tissue homogenates. Finally, NIRFI was utilized to localize SWCNTs on lung tissue sections used for pathological analysis. Results revealed that SWCNTs remained in the lung over 21 days and were consistent with alveolar wall restructuring and granuloma formation. This study is the first to quantify SWCNTs in mouse lungs using both semi-quantitative tracking and quantitative mass measurements using NIRF, highlighting this as a sensitive and specific technique for assessing SWCNT clearance in vivo.

2.
ISME J ; 13(11): 2690-2700, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243331

RESUMO

In the last decade, extensive application of hydraulic fracturing technologies to unconventional low-permeability hydrocarbon-rich formations has significantly increased natural-gas production in the United States and abroad. The injection of surface-sourced fluids to generate fractures in the deep subsurface introduces microbial cells and substrates to low-permeability rock. A subset of injected organic additives has been investigated for their ability to support biological growth in shale microbial community members; however, to date, little is known on how complex xenobiotic organic compounds undergo biotransformations in this deep rock ecosystem. Here, high-resolution chemical, metagenomic, and proteomic analyses reveal that widely-used surfactants are degraded by the shale-associated taxa Halanaerobium, both in situ and under laboratory conditions. These halotolerant bacteria exhibit surfactant substrate specificities, preferring polymeric propoxylated glycols (PPGs) and longer alkyl polyethoxylates (AEOs) over polyethylene glycols (PEGs) and shorter AEOs. Enzymatic transformation occurs through repeated terminal-end polyglycol chain shortening during co-metabolic growth through the methylglyoxal bypass. This work provides the first evidence that shale microorganisms can transform xenobiotic surfactants in fracture fluid formulations, potentially affecting the efficiency of hydrocarbon recovery, and demonstrating an important association between injected substrates and microbial growth in an engineered subsurface ecosystem.


Assuntos
Bactérias/classificação , Glicóis/metabolismo , Fraturamento Hidráulico , Gás Natural/análise , Campos de Petróleo e Gás/microbiologia , Tensoativos/metabolismo , Bactérias/genética , Biodegradação Ambiental , Microbiota , Minerais/química , Ohio , Proteômica , Tensoativos/análise , Águas Residuárias/microbiologia
3.
Mar Pollut Bull ; 81(2): 340-6, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23849955

RESUMO

Contaminants of emerging concern were measured in mussels collected along the California coast in 2009-2010. The seven classes were alkylphenols, pharmaceuticals and personal care products, polybrominated diphenyl ethers (PBDE), other flame retardants, current use pesticides, perfluorinated compounds (PFC), and single walled carbon nanotubes. At least one contaminant was detected at 67 of the 68 stations (98%), and 67 of the 167 analytes had at least one detect (40%). Alkylphenol, PBDE, and PFC concentrations increased with urbanization and proximity to storm water discharge; pesticides had higher concentrations at agricultural stations. These results suggest that certain compounds; for example, alkylphenols, lomefloxacin and PBDE, are appropriate for inclusion in future coastal bivalve monitoring efforts based on maximum concentrations >50 ng/g dry weight and detection frequencies >50%. Other compounds, for example PFC and hexabromocyclododecane (HBCD), may also be suggested for inclusion due to their >25% detection frequency and potential for biomagnification.


Assuntos
Monitoramento Ambiental , Mytilus/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Animais , California , Retardadores de Chama/análise , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/metabolismo , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/metabolismo , Praguicidas/análise , Praguicidas/metabolismo , Frutos do Mar/estatística & dados numéricos , Águas Residuárias/estatística & dados numéricos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA