Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759674

RESUMO

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Conservação dos Recursos Naturais , Floresta Úmida , Agricultura , Brasil , Carbono , Humanos
3.
Nature ; 559(7715): 517-526, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30046075

RESUMO

The tropics contain the overwhelming majority of Earth's biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/tendências , Clima Tropical , Animais , Mudança Climática , Atividades Humanas , Plantas , Fatores Socioeconômicos
4.
Ecol Lett ; 26(8): 1301-1313, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37248659

RESUMO

Understanding the composition of urban wildlife communities is crucial to promote biodiversity, ecosystem function and links between nature and people. Using crowdsourced data from over five million eBird checklists, we examined the influence of urban characteristics on avian richness and function at 8443 sites within and across 137 global cities. Under half of the species from regional pools were recorded in cities, and we found a significant phylogenetic signal for urban tolerance. Site-level avian richness was positively influenced by the extent of open forest, cultivation and wetlands and avian functional diversity by wetlands. Functional diversity co-declined with richness, but groups including granivores and aquatic birds occurred even at species-poor sites. Cities in arid areas held a higher percentage of regional species richness. Our results indicate commonalities in the influence of habitat on richness and function, as well as lower niche availability, and phylogenetic diversity across the world's cities.


Assuntos
Biodiversidade , Ecossistema , Humanos , Animais , Cidades , Filogenia , Aves , Urbanização
5.
Conserv Biol ; 37(4): e14067, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36751965

RESUMO

Inner phenomena, such as personal motivations for pursuing sustainability, may be critical levers for improving conservation outcomes. Most conservation research and policies, however, focus on external phenomena (e.g., ecological change or economic processes). We explored the factors shaping 9 conservation attitudes toward forest and wildlife protection among colonist farmers around an Amazonian deforestation frontier. Our data comprised 241 face-to-face quantitative surveys, complemented with qualitative insights from open-ended questionnaire responses and opportunistic semistructured interviews. To account for the full spectrum of possible inner motivations, we employed measures of nature connection (indicating biospheric motivation) and personal values organized around the traditionalism (traditionalist through to high openness to change) and universalism dimensions (egoistic through to altruistic motivations). We used averaged beta-binomial generalized linear models to assess the role of external factors (socioeconomic, sociodemographic, and environmental) and personal (inner) motivations on the variation in attitudes. Each attitude was modeled separately. The relative importance of each predictor was judged by the proportion of models where it appeared as significant. Proconservation views were expressed by the majority (at least 65%) of the respondents in 7 out of the 9 attitude models. The most consistent predictors were emotional nature connection and personal values (significant in 4-6 out of 9 models), rather than external phenomena (significant in 0-5 models). However, the poorest farmers had lower scores on the agreement with prioritizing nature over development (𝛽 = -0.52, 95% CI: -0.96 to -0.07). Qualitative data also indicated that economic barriers hinder forest conservation on farms. These results suggest that biospheric, traditionalistic, and altruistic motivations promote people's proconservation attitudes, but nurturing these latent motivations is unlikely to improve conservation outcomes if material poverty remains unaddressed. Integrating the inner-outer perspective into conservation thinking and practical interventions could foster environmental stewardship and increase human well-being.


Evaluación de la influencia de la conexión y los valores naturales sobre las actitudes de conservación es una frontera tropical de deforestación Resumen Los fenómenos interiores, como los motivos personales para ser sustentables, pueden ser niveladores importantes para aumentar los resultados de conservación. Sin embargo, la mayor parte de la investigación y las políticas se enfocan en los fenómenos exteriores (cambios ecológicos o procesos económicos, por ejemplo). Exploramos los factores que moldean nueve actitudes de conservación relacionadas con la protección de los bosques y la fauna en un grupo de agricultores colonos cercanos a una frontera de deforestación en la Amazonía. Nuestros datos se obtuvieron de 241 encuestas presenciales cuantitativas complementadas con información cualitativa tomada de las respuestas en cuestionarios de preguntas abiertas y entrevistas oportunistas semiestructuradas. Para considerar el espectro completo de las posibles motivaciones interiores empleamos medidas de la conexión natural (lo que indica motivos relacionados a la biósfera) y valores personales organizados en torno a las dimensiones del tradicionalismo (del tradicionalista hasta una gran apertura al cambio) y el universalismo (del egoísta hasta los motivos altruistas). Usamos modelos lineales generalizados betabinomiales promediados para evaluar el papel que tienen los factores externos (socioeconómicos, sociodemográficos y ambientales) y los motivos personales (interiores) en la variación de las actitudes. Modelamos cada actitud por separado. Juzgamos la importancia relativa de cada predictor mediante la proporción de modelos en los que aparecían como significativos. La mayoría (al menos el 65%) de los respondientes expresó las opiniones en pro de la conservación en siete de los nueve modelos de actitud. Los predictores más uniformes fueron la conexión emocional natural y los valores personales (significativos en cuatro a seis de los nueve modelos), en lugar de los fenómenos externos (significativos en cero a cinco modelos). Sin embargo, los agricultores más pobres tuvieron un puntaje más bajo en cuanto a estar de acuerdo con la priorización de la naturaleza sobre el desarrollo (𝛽 = -0.52, 95% CI -0.96 a -0.07). Los datos cualitativos también indicaron que las barreras económicas impiden la conservación de los bosques en las fincas. Estos resultados sugieren que los motivos tradicionalistas, altruistas y aquellos relacionados con la biósfera promueven las actitudes en pro de la conservación de las personas, pero es poco probable que propiciar estos motivos latentes aumente los resultados de conservación si sigue sin solucionarse la pobreza material. La inclusión de las perspectivas internas y externas dentro del pensamiento de conservación y las intervenciones prácticas podría fomentar la administración ambiental e incrementar el bienestar humano.


Assuntos
Atitude , Conservação dos Recursos Naturais , Animais , Humanos , Conservação dos Recursos Naturais/métodos , Motivação , Animais Selvagens , Florestas
6.
Nature ; 535(7610): 144-7, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27362236

RESUMO

Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69­80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 39­54% loss of conservation value: 96­171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará's strictly protected areas is equivalent to the loss of 92,000­139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Florestas , Atividades Humanas , Clima Tropical , Animais , Aves/fisiologia , Brasil , Besouros/fisiologia , Incêndios/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Plantas
7.
Conserv Biol ; 34(2): 395-404, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31313352

RESUMO

Habitat loss, fragmentation, and degradation have pervasive detrimental effects on tropical forest biodiversity, but the role of the surrounding land use (i.e., matrix) in determining the severity of these impacts remains poorly understood. We surveyed bird species across an interior-edge-matrix gradient to assess the effects of matrix type on biodiversity at 49 different sites with varying levels of landscape fragmentation in the Brazilian Atlantic Forest-a highly threatened biodiversity hotspot. Both area and edge effects were more pronounced in forest patches bordering pasture matrix, whereas patches bordering Eucalyptus plantation maintained compositionally similar bird communities between the edge and the interior and exhibited reduced effects of patch size. These results suggest the type of matrix in which forest fragments are situated can explain a substantial amount of the widely reported variability in biodiversity responses to forest loss and fragmentation.


Mediación de los Efectos de Área y de Borde sobre los Fragmentos de Bosque Causados por el Uso de Suelo Adyacente Resumen La pérdida del hábitat, la fragmentación y la degradación tienen efectos nocivos generalizados sobre la biodiversidad de los bosques tropicales. A pesar de esto, el papel del uso de suelo de los terrenos adyacentes (es decir, la matriz) en la determinación de la gravedad de estos impactos todavía está poco entendido. Censamos las especies de aves a lo largo de un gradiente de borde interno de matriz para evaluar los efectos del tipo de matriz sobre la biodiversidad en al menos 49 sitios con diferentes niveles de fragmentación del paisaje en el Bosque Atlántico Brasileño - un punto caliente de biodiversidad que se encuentra severamente amenazado. Tanto los efectos de área como los de borde estuvieron más pronunciados en los fragmentos de bosque que limitan con la matriz de pasturas, mientras que los fragmentos que limitan con plantaciones de Eucalyptus mantuvieron comunidades de aves similares en composición con aquellas entre el borde y el interior y mostraron efectos reducidos del tamaño de fragmento. Estos resultados sugieren que el tipo de matriz en el cual están situados los fragmentos de bosque puede explicar una cantidad sustancial de la ampliamente reportada variabilidad de respuestas a la pérdida del bosque y a la fragmentación.


Assuntos
Conservação dos Recursos Naturais , Florestas , Animais , Biodiversidade , Brasil , Ecossistema
9.
Glob Chang Biol ; 24(12): 5680-5694, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216600

RESUMO

Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for forest biota. Nevertheless, their capacity to regain the biotic attributes of undisturbed primary forests (UPFs) remains poorly understood. Here, we provide a comprehensive assessment of SF recovery, using extensive tropical biodiversity, biomass, and environmental datasets. These data, collected in 59 naturally regenerating SFs and 30 co-located UPFs in the eastern Amazon, cover >1,600 large- and small-stemmed plant, bird, and dung beetles species and a suite of forest structure, landscape context, and topoedaphic predictors. After up to 40 years of regeneration, the SFs we surveyed showed a high degree of biodiversity resilience, recovering, on average among taxa, 88% and 85% mean UPF species richness and composition, respectively. Across the first 20 years of succession, the period for which we have accurate SF age data, biomass recovered at 1.2% per year, equivalent to a carbon uptake rate of 2.25 Mg/ha per year, while, on average, species richness and composition recovered at 2.6% and 2.3% per year, respectively. For all taxonomic groups, biomass was strongly associated with SF species distributions. However, other variables describing habitat complexity-canopy cover and understory stem density-were equally important occurrence predictors for most taxa. Species responses to biomass revealed a successional transition at approximately 75 Mg/ha, marking the influx of high-conservation-value forest species. Overall, our results show that naturally regenerating SFs can accumulate substantial amounts of carbon and support many forest species. However, given that the surveyed SFs failed to return to a typical UPF state, SFs are not substitutes for UPFs.


Assuntos
Biodiversidade , Biomassa , Florestas , Animais , Aves/fisiologia , Ciclo do Carbono , Besouros/fisiologia , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Ecossistema , Árvores , Clima Tropical
11.
Ecol Lett ; 19(9): 1091-100, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353518

RESUMO

The ratio of species extinctions to introductions has been comparable for many insular assemblages, suggesting that introductions could have 'compensated' for extinctions. However, the capacity for introduced species to replace ecological roles and evolutionary history lost following extinction is unclear. We investigated changes in bird functional and phylogenetic diversity in the wake of extinctions and introductions across a sample of 32 islands worldwide. We found that extinct and introduced species have comparable functional and phylogenetic alpha diversity. However, this was distributed at different positions in functional space and in the phylogeny, indicating a 'false compensation'. Introduced and extinct species did not have equivalent functional roles nor belong to similar lineages. This makes it unlikely that novel island biotas composed of introduced taxa will be able to maintain ecological roles and represent the evolutionary histories of pre-disturbance assemblages and highlights the importance of evaluating changes in alpha and beta diversity concurrently.


Assuntos
Biodiversidade , Aves/fisiologia , Extinção Biológica , Espécies Introduzidas , Animais , Ilhas , Modelos Biológicos
12.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27928045

RESUMO

Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change.


Assuntos
Biodiversidade , Aves/classificação , Florestas , Clima Tropical , Animais , Cadeia Alimentar , Herbivoria , Atividades Humanas , Humanos , Insetos , Dispersão de Sementes
13.
Oecologia ; 180(3): 903-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26566810

RESUMO

As humans continue to alter tropical landscapes across the world, it is important to understand what environmental factors help determine the persistence of biodiversity in modified ecosystems. Studies on well-known taxonomic groups can offer critical insights as to the fate of biodiversity in these modified systems. Here we investigated species-specific responses of 44 forest-associated bird species with different behavioural traits to forest disturbance in 171 transects distributed across 31 landscapes in two regions of the eastern Brazilian Amazon. We investigated patterns of species occurrence in primary forests varyingly disturbed by selective-logging and fire and examined the relative importance of local, landscape and historical environmental variables in determining species occurrences. Within undisturbed and disturbed primary forest transects, we found that distance to forest edge and the biomass of large trees were the most important predictors driving the occurrence of individual species. However, we also found considerable variation in species responses to different environmental variables as well as inter-regional variation in the responses of the same species to the same environmental variables. We advocate the utility of using species-level analyses to complement community-wide responses in order to uncover highly variable and species-specific responses to environmental change that remain so poorly understood.


Assuntos
Distribuição Animal , Biodiversidade , Aves , Meio Ambiente , Florestas , Árvores , Animais , Biomassa , Brasil , Incêndios , Humanos , Especificidade da Espécie , Clima Tropical
16.
Ecol Lett ; 18(10): 1108-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26299405

RESUMO

Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape ß-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of ß-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that ß-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.


Assuntos
Biodiversidade , Florestas , Clima Tropical , Agricultura , Animais , Aves , Brasil , Conservação dos Recursos Naturais , Insetos
17.
Ecology ; 96(10): 2692-704, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649390

RESUMO

Competitive interactions among species with similar ecological niches are known to regulate the assembly of biological communities. However, it is not clear whether such forms of competition can predict the collapse of communities and associated shifts in ecosystem function in the face of environmental change. Here, we use phylogenetic and functional trait data to test whether communities of two ecologically important guilds of tropical birds (frugivores and insectivores) are structured by species interactions in a fragmented Amazonian forest landscape. In both guilds, we found that forest patch size, quality, and degree of isolation influence the phylogenetic and functional trait structure of communities, with small, degraded, or isolated forest patches having an increased signature of competition (i.e., phylogenetic and functional trait overdispersion in relation to null models). These results suggest that local extinctions in the context of fragmentation are nonrandom, with a consistent bias toward more densely occupied regions of niche space. We conclude that the loss of biodiversity in fragmented landscapes is mediated by niche-based competitive interactions among species, with potentially far-reaching implications for key ecosystem processes, including seed dispersal and plant damage by phytophagous insects.


Assuntos
Biodiversidade , Aves/classificação , Florestas , Clima Tropical , Animais , Cadeia Alimentar
18.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274363

RESUMO

Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called 'roadless volume (RV)' at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation.


Assuntos
Biodiversidade , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Meios de Transporte , Animais , Brasil , Ecossistema
19.
Conserv Biol ; 28(5): 1271-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24779443

RESUMO

Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long-term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km(2) eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large-bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well-forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia.


Assuntos
Distribuição Animal , Aves/fisiologia , Extinção Biológica , Animais , Brasil , Conservação dos Recursos Naturais , Ecossistema , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA