Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 20(12): 2748-2758, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29962100

RESUMO

AIM: Recently we have observed differences in the ability of metformin and AICAR to repress glucose production from hepatocytes using 8CPT-cAMP. Previous results indicate that, in addition to activating protein kinase A, 8CPT-modified cAMP analogues suppress the nitrobenzylthioinosine (NBMPR)-sensitive equilibrative nucleoside transporter ENT1. We aimed to exploit 8CPT-cAMP, 8CPT-2-Methyl-O-cAMP and NBMPR, which is highly selective for a high-affinity binding-site on ENT1, to investigate the role of ENT1 in the liver-specific glucose-lowering properties of AICAR and metformin. METHODS: Primary mouse hepatocytes were incubated with AICAR and metformin in combination with cAMP analogues, glucagon, forskolin and NBMPR. Hepatocyte glucose production (HGP) and AMPK signalling were measured, and a uridine uptake assay with supporting LC-MS was used to investigate nucleoside depletion from medium by cells. RESULTS: AICAR and metformin increased AMPK pathway phosphorylation and decreased HGP induced by dibutyryl cAMP and glucagon. HGP was also induced by 8CPT-cAMP, 8CPT-2-Methyl-O-cAMP and NBMPR; however, in each case this was resistant to suppression by AICAR but not by metformin. Cross-validation of tracer and mass spectrometry studies indicates that 8CPT-cAMP, 8CPT-2-Methyl-O-cAMP and NBMPR inhibited the effects of AICAR, at least in part, by impeding its uptake into hepatocytes. CONCLUSIONS: We report for the first time that suppression of ENT1 induces HGP. ENT1 inhibition also impedes uptake and the effects of AICAR, but not metformin, on HGP. Further investigation of nucleoside transport may illuminate a better understanding of how metformin and AICAR each regulate HGP.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/efeitos dos fármacos , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacocinética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacocinética , Animais , Transporte Biológico/efeitos dos fármacos , Feminino , Fígado/metabolismo , Metformina/farmacocinética , Camundongos , Fosforilação/efeitos dos fármacos , Ribonucleotídeos/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Tioinosina/análogos & derivados , Tioinosina/metabolismo
2.
Eur J Clin Nutr ; 75(12): 1745-1756, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34131300

RESUMO

Gestational diabetes mellitus (GDM) is a common disorder of pregnancy with short- and long-term consequences for mother and baby. Pre-eclampsia is of major concern to obstetricians due to its sudden onset and increased morbidity and mortality for mother and baby. The incidence of these conditions continues to increase due to widespread maternal obesity. Maternal obesity is a risk factor for GDM and pre-eclampsia, yet our understanding of the role of adipose tissue and adipocyte biology in their aetiology is very limited. In this article, available data on adipose tissue and adipocyte function in healthy and obese pregnancy and how these are altered in GDM and pre-eclampsia are reviewed. Using our understanding of adipose tissue and adipocyte biology in non-pregnant populations, a role for underlying adipocyte dysfunction in the pathological pathways of these conditions is discussed.


Assuntos
Diabetes Gestacional , Pré-Eclâmpsia , Tecido Adiposo/metabolismo , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Obesidade/complicações , Obesidade/metabolismo , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/etiologia , Gravidez , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA