Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 234: 109599, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488009

RESUMO

Limbal epithelial stem cells are not only critical for corneal epithelial homeostasis but also have the capacity to change from a relatively quiescent mitotic phenotype to a rapidly proliferating cell in response to population depletion following corneal epithelial wounding. Pax6+/- mice display many abnormalities including corneal vascularization and these aberrations are consistent with a limbal stem cell deficiency (LSCD) phenotype. FoxC1 has an inhibitory effect on corneal avascularity and a positive role in stem cell maintenance in many tissues. However, the role of FoxC1 in limbal epithelial stem cells remains unknown. To unravel FoxC1's role(s) in limbal epithelial stem cell homeostasis, we utilized an adeno-associated virus (AAV) vector to topically deliver human FOXC1 proteins into Pax6 +/- mouse limbal epithelium. Under unperturbed conditions, overexpression of FOXC1 in the limbal epithelium had little significant change in differentiation (PAI-2, Krt12) and proliferation (BrdU, Ki67). Conversely, such overexpression resulted in a marked increase in the expression of putative limbal epithelial stem cell markers, N-cadherin and Lrig1. After corneal injuries in Pax6 +/- mice, FOXC1 overexpression enhanced the behavior of limbal epithelial stem cells from quiescence to a highly proliferative status. Overall, the treatment of AAV8-FOXC1 may be beneficial to the function of limbal epithelial stem cells in the context of a deficiency of Pax6 function.


Assuntos
Doenças da Córnea , Epitélio Corneano , Limbo da Córnea , Animais , Humanos , Camundongos , Córnea , Doenças da Córnea/metabolismo , Desbridamento , Células Epiteliais , Epitélio Corneano/metabolismo , Limbo da Córnea/metabolismo , Células-Tronco
2.
Hum Genet ; 141(8): 1385-1407, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35089417

RESUMO

Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, these data suggest that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.


Assuntos
Coloboma , Animais , Coloboma/genética , Olho , Crista Neural , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Hum Mol Genet ; 28(8): 1298-1311, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561643

RESUMO

Pigmentary glaucoma (PG) is a common glaucoma subtype that results from release of pigment from the iris, called pigment dispersion syndrome (PDS), and its deposition throughout the anterior chamber of the eye. Although PG has a substantial heritable component, no causative genes have yet been identified. We used whole exome sequencing of two independent pedigrees to identify two premelanosome protein (PMEL) variants associated with heritable PDS/PG. PMEL encodes a key component of the melanosome, the organelle essential for melanin synthesis, storage and transport. Targeted screening of PMEL in three independent cohorts (n = 394) identified seven additional PDS/PG-associated non-synonymous variants. Five of the nine variants exhibited defective processing of the PMEL protein. In addition, analysis of PDS/PG-associated PMEL variants expressed in HeLa cells revealed structural changes to pseudomelanosomes indicating altered amyloid fibril formation in five of the nine variants. Introduction of 11-base pair deletions to the homologous pmela in zebrafish by the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 method caused profound pigmentation defects and enlarged anterior segments in the eye, further supporting PMEL's role in ocular pigmentation and function. Taken together, these data support a model in which missense PMEL variants represent dominant negative mutations that impair the ability of PMEL to form functional amyloid fibrils. While PMEL mutations have previously been shown to cause pigmentation and ocular defects in animals, this research is the first report of mutations in PMEL causing human disease.


Assuntos
Glaucoma de Ângulo Aberto/genética , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/fisiologia , Adulto , Amiloide/metabolismo , Animais , Feminino , Células HeLa , Humanos , Iris/metabolismo , Masculino , Melanossomas/genética , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Linhagem , Pigmentação/genética , Sequenciamento do Exoma/métodos , Adulto Jovem , Peixe-Zebra
4.
PLoS Genet ; 14(3): e1007246, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29522511

RESUMO

The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Coloboma/embriologia , Coloboma/genética , Citocromo P-450 CYP1B1/genética , Olho/embriologia , Adulto , Animais , Animais Geneticamente Modificados , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Embrião de Galinha , Embrião não Mamífero , Fator 6 de Diferenciação de Crescimento/genética , Fator 6 de Diferenciação de Crescimento/metabolismo , Humanos , Lactente , Camundongos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Dev Biol ; 453(1): 34-47, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199900

RESUMO

Vascular smooth muscle of the head derives from neural crest, but developmental mechanisms and early transcriptional drivers of the vSMC lineage are not well characterized. We find that in early development, the transcription factor foxc1b is expressed in mesenchymal cells that associate with the vascular endothelium. Using timelapse imaging, we observe that foxc1b expressing mesenchymal cells differentiate into acta2 expressing vascular mural cells. We show that in zebrafish, while foxc1b is co-expressed in acta2 positive smooth muscle cells that associate with large diameter vessels, it is not co-expressed in capillaries where pdgfrß positive pericytes are located. In addition to being an early marker of the lineage, foxc1 is essential for vSMC differentiation; we find that foxc1 loss of function mutants have defective vSMC differentiation and that early genetic ablation of foxc1b or acta2 expressing populations blocks vSMC differentiation. Furthermore, foxc1 is expressed upstream of acta2 and is required for acta2 expression in vSMCs. Using RNA-Seq we determine an enriched intersectional gene expression profile using dual expression of foxc1b and acta2 to identify novel vSMC markers. Taken together, our data suggests that foxc1 is a marker of vSMCs and plays a critical functional role in promoting their differentiation.


Assuntos
Diferenciação Celular , Embrião não Mamífero/citologia , Fatores de Transcrição Forkhead/metabolismo , Cabeça/irrigação sanguínea , Cabeça/embriologia , Músculo Liso Vascular/citologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Diferenciação Celular/genética , Embrião não Mamífero/metabolismo , Endotélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , Transcriptoma/genética , Regulação para Cima , Peixe-Zebra/genética
6.
Am J Med Genet C Semin Med Genet ; 184(3): 590-610, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32852110

RESUMO

Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.


Assuntos
Coloboma/genética , Olho/crescimento & desenvolvimento , Microftalmia/genética , Animais , Criança , Coloboma/patologia , Olho/metabolismo , Humanos , Microftalmia/patologia , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Organogênese/genética
7.
Proc Natl Acad Sci U S A ; 114(34): E7131-E7139, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28778995

RESUMO

EGR1 is an early growth response zinc finger transcription factor with broad actions, including in differentiation, mitogenesis, tumor suppression, and neuronal plasticity. Here we demonstrate that Egr1-/- mice on the C57BL/6 background have normal eyelid development, but back-crossing to BALB/c background for four or five generations resulted in defective eyelid development by day E15.5, at which time EGR1 was expressed in eyelids of WT mice. Defective eyelid formation correlated with profound ocular anomalies evident by postnatal days 1-4, including severe cryptophthalmos, microphthalmia or anophthalmia, retinal dysplasia, keratitis, corneal neovascularization, cataracts, and calcification. The BALB/c albino phenotype-associated Tyrc tyrosinase mutation appeared to contribute to the phenotype, because crossing the independent Tyrc-2J allele to Egr1-/- C57BL/6 mice also produced ocular abnormalities, albeit less severe than those in Egr1-/- BALB/c mice. Thus EGR1, in a genetic background-dependent manner, plays a critical role in mammalian eyelid development and closure, with subsequent impact on ocular integrity.


Assuntos
Pálpebras/crescimento & desenvolvimento , Camundongos/genética , Camundongos/metabolismo , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Pálpebras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Hum Mol Genet ; 25(7): 1382-91, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908622

RESUMO

Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma.


Assuntos
Mutação da Fase de Leitura , Receptores Frizzled/genética , Via de Sinalização Wnt , Animais , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Camundongos , Microftalmia/genética , Microftalmia/metabolismo , Linhagem , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Mol Vis ; 23: 952-962, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29296075

RESUMO

Purpose: To evaluate the ability of a targeted genome-wide association study (GWAS) to identify genes associated with central corneal thickness (CCT). Methods: A targeted GWAS was used to investigate whether ten candidate genes with known roles in corneal development were associated with CCT in two Singaporean populations. The single nucleotide polymorphisms (SNPs) within a 500 kb interval encompassing each candidate were analyzed, and in light of the resulting data, members of the Wnt pathway were subsequently screened using similar methodology. Results: Variants within the 500 kb interval encompassing three candidate genes, DKK1 (rs1896368, p=1.32×10-3), DKK2 (rs17510449, p=7.34×10-4), and FOXO1 (rs7326616, p=1.56×10-4 and rs4943785, p=1.19×10-3), were statistically significantly associated with CCT in the Singapore Indian population. DKK2 was statistically significantly associated with CCT in a separate Singapore Malaysian population (rs10015200, p=2.26×10-3). Analysis of Wnt signaling pathway genes in each population demonstrated that TCF7L2 (rs3814573, p=1.18×10-3), RYK (rs6763231, p=1.12×10-3 and rs4854785, p=1.11×10-3), and FZD8 (rs640827, p=5.17×10-4) were statistically significantly associated with CCT. Conclusions: The targeted GWAS identified four genes (DKK1, DKK2, RYK, and FZD8) with novel associations with CCT and confirmed known associations with two genes, FOXO1 and TCF7L2. All six participate in the Wnt pathway, supporting a broader role for Wnt signaling in regulating the thickness of the cornea. In parallel, this study demonstrated that a hypothesis-driven candidate gene approach can identify associations in existing GWAS data sets.


Assuntos
Córnea/anatomia & histologia , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Via de Sinalização Wnt/genética , Animais , Povo Asiático/genética , Paquimetria Corneana , Feminino , Proteína Forkhead Box O1/genética , Humanos , Índia/etnologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Malásia/etnologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/genética , Singapura/epidemiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
10.
PLoS Genet ; 10(7): e1004491, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010521

RESUMO

Ocular coloboma is a sight-threatening malformation caused by failure of the choroid fissure to close during morphogenesis of the eye, and is frequently associated with additional anomalies, including microphthalmia and cataracts. Although Hedgehog signaling is known to play a critical role in choroid fissure closure, genetic regulation of this pathway remains poorly understood. Here, we show that the transcription factor Sox11 is required to maintain specific levels of Hedgehog signaling during ocular development. Sox11-deficient zebrafish embryos displayed delayed and abnormal lens formation, coloboma, and a specific reduction in rod photoreceptors, all of which could be rescued by treatment with the Hedgehog pathway inhibitor cyclopamine. We further demonstrate that the elevated Hedgehog signaling in Sox11-deficient zebrafish was caused by a large increase in shha transcription; indeed, suppressing Shha expression rescued the ocular phenotypes of sox11 morphants. Conversely, over-expression of sox11 induced cyclopia, a phenotype consistent with reduced levels of Sonic hedgehog. We screened DNA samples from 79 patients with microphthalmia, anophthalmia, or coloboma (MAC) and identified two novel heterozygous SOX11 variants in individuals with coloboma. In contrast to wild type human SOX11 mRNA, mRNA containing either variant failed to rescue the lens and coloboma phenotypes of Sox11-deficient zebrafish, and both exhibited significantly reduced transactivation ability in a luciferase reporter assay. Moreover, decreased gene dosage from a segmental deletion encompassing the SOX11 locus resulted in microphthalmia and related ocular phenotypes. Therefore, our study reveals a novel role for Sox11 in controlling Hedgehog signaling, and suggests that SOX11 variants contribute to pediatric eye disorders.


Assuntos
Coloboma/genética , Desenvolvimento Embrionário/genética , Proteínas Hedgehog/biossíntese , Proteínas Hedgehog/genética , Fatores de Transcrição SOXC/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Animais , Doenças da Coroide/genética , Doenças da Coroide/metabolismo , Doenças da Coroide/patologia , Coloboma/metabolismo , Coloboma/patologia , Embrião não Mamífero , Olho/crescimento & desenvolvimento , Olho/metabolismo , Humanos , Morfogênese/genética , RNA Mensageiro/biossíntese , Fatores de Transcrição SOXC/biossíntese , Transdução de Sinais/genética , Peixe-Zebra/genética
11.
Hum Mol Genet ; 23(10): 2511-26, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24412933

RESUMO

Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice.


Assuntos
Códon sem Sentido , Coloboma/genética , Fatores de Transcrição/genética , Adolescente , Animais , Criança , Consanguinidade , Análise Mutacional de DNA , Proteínas de Ligação a DNA , Olho/embriologia , Olho/patologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Expressão Gênica , Genes Recessivos , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Linhagem , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
12.
Am J Hum Genet ; 93(1): 158-66, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810382

RESUMO

SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs*18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657*]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Mutação da Fase de Leitura , Transtornos do Crescimento/genética , Hipercalcemia/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Exoma , Éxons , Feminino , Triagem de Portadores Genéticos , Heterozigoto , Humanos , Recém-Nascido , Masculino , Linhagem , Fenótipo , Fosforilação , Transdução de Sinais
13.
Hum Mol Genet ; 22(7): 1432-42, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307924

RESUMO

Retinal dystrophies are predominantly caused by mutations affecting the visual phototransduction system and cilia, with few genes identified that function to maintain photoreceptor survival. We reasoned that growth factors involved with early embryonic retinal development would represent excellent candidates for such diseases. Here we show that mutations in the transforming growth factor-ß (TGF-ß) ligand Growth Differentiation Factor 6, which specifies the dorso-ventral retinal axis, contribute to Leber congenital amaurosis. Furthermore, deficiency of gdf6 results in photoreceptor degeneration, so demonstrating a connection between Gdf6 signaling and photoreceptor survival. In addition, in both murine and zebrafish mutant models, we observe retinal apoptosis, a characteristic feature of human retinal dystrophies. Treatment of gdf6-deficient zebrafish embryos with a novel aminopropyl carbazole, P7C3, rescued the retinal apoptosis without evidence of toxicity. These findings implicate for the first time perturbed TGF-ß signaling in the genesis of retinal dystrophies, support the study of related morphogenetic genes for comparable roles in retinal disease and may offer additional therapeutic opportunities for genetically heterogeneous disorders presently only treatable with gene therapy.


Assuntos
Sobrevivência Celular , Fator 6 de Diferenciação de Crescimento/genética , Amaurose Congênita de Leber/genética , Retinose Pigmentar/genética , Sequência de Aminoácidos , Animais , Apoptose , Análise Mutacional de DNA , Estudos de Associação Genética , Fator 6 de Diferenciação de Crescimento/fisiologia , Humanos , Amaurose Congênita de Leber/patologia , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/patologia , Retinose Pigmentar/patologia , Peixe-Zebra
14.
Proc Natl Acad Sci U S A ; 109(6): 2015-20, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22171010

RESUMO

Normal vision requires the precise control of vascular growth to maintain corneal transparency. Here we provide evidence for a unique mechanism by which the Forkhead box transcription factor FoxC1 regulates corneal vascular development. Murine Foxc1 is essential for development of the ocular anterior segment, and in humans, mutations have been identified in Axenfeld-Rieger syndrome, a disorder characterized by anterior segment dysgenesis. We show that FOXC1 mutations also lead to corneal angiogenesis, and that mice homozygous for either a global (Foxc1(-/-)) or neural crest (NC)-specific (NC-Foxc1(-/-)) null mutation display excessive growth of corneal blood and lymphatic vessels. This is associated with disorganization of the extracellular matrix and increased expression of multiple matrix metalloproteinases. Heterozygous mutants (Foxc1(+/-) and NC-Foxc1(+/-)) exhibit milder phenotypes, such as disrupted limbal vasculature. Moreover, environmental exposure to corneal injury significantly increases growth of both blood and lymphatic vessels in both Foxc1(+/-) and NC-Foxc1(+/-) mice compared with controls. Notably, this amplification of the angiogenic response is abolished by inhibition of VEGF receptor 2. Collectively, these findings identify a role for FoxC1 in inhibiting corneal angiogenesis, thereby maintaining corneal transparency by regulating VEGF signaling.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Córnea/irrigação sanguínea , Fatores de Transcrição Forkhead/metabolismo , Álcalis , Animais , Segmento Anterior do Olho/anormalidades , Segmento Anterior do Olho/metabolismo , Segmento Anterior do Olho/patologia , Vasos Sanguíneos/patologia , Queimaduras/patologia , Córnea/patologia , Substância Própria/enzimologia , Substância Própria/patologia , Anormalidades do Olho/complicações , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Oftalmopatias Hereditárias , Haploinsuficiência/genética , Heterozigoto , Linfangiogênese , Metaloproteinases da Matriz/metabolismo , Camundongos , Mutação/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Pupila , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Mol Vis ; 19: 1082-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734077

RESUMO

PURPOSE: Longitudinal observation of retinal degeneration and regeneration in animal models is time-consuming and expensive. To address this challenge, we used a custom fundus lens and zebrafish transgenic lines with cell-specific fluorescent reporters to document the state of individual retinal neurons in vivo. METHODS: We empirically tested several versions of a custom fundus lens and assessed its capabilities under a stereomicroscope to image retinal neurons in transgenic zebrafish lines expressing fluorescent reporters. Vascular branch points provided spatial references enabling determination of whether changes induced by ablating photoreceptors were repaired over the course of several days. RESULTS: Individual ultraviolet- and blue-sensitive cone photoreceptors were readily visualized in vivo, and green fluorescent protein-labeled blood vessels were used as landmarks to facilitate orientation. Sequential imaging of the same retinal areas over several weeks permitted documentation of photoreceptor reappearance in individual animals. Photoreceptor regeneration in these regions was evidenced by the reappearance of individual fluorescent cells. CONCLUSIONS: This technique permits real-time in vivo serial examination of individual fish, permitting temporal analysis of changes to the retinal mosaic. The key benefits this technique offers include that the same retinal locations can be recovered and viewed at multiple time points, that in vivo observations are comparable to those made ex vivo, and that fewer animals need to be euthanized over the course of an experiment. Our results promise the ability to detect individual cells, including reappearing cone photoreceptors, and to monitor disease progression during screening of therapies in an adult animal model of late onset disease.


Assuntos
Fundo de Olho , Cristalino/patologia , Cristalino/fisiopatologia , Imagem Óptica , Regeneração , Degeneração Retiniana/fisiopatologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Fluorescência , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Mosaicismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia , Raios Ultravioleta , Peixe-Zebra/genética
16.
Hum Mol Genet ; 19(2): 287-98, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19864492

RESUMO

Ocular mal-development results in heterogeneous and frequently visually disabling phenotypes that include coloboma and microphthalmia. Due to the contribution of bone morphogenetic proteins to such processes, the function of the paralogue Growth Differentiation Factor 3 was investigated. Multiple mis-sense variants were identified in patients with ocular and/or skeletal (Klippel-Feil) anomalies including one individual with heterozygous alterations in GDF3 and GDF6. These variants were characterized, individually and in combination, through integrated biochemical and zebrafish model organism analyses, demonstrating appreciable effects with western blot analyses, luciferase based reporter assays and antisense morpholino inhibition. Notably, inhibition of the zebrafish co-orthologue of GDF3 accurately recapitulates patient phenotypes. By demonstrating the pleiotropic effects of GDF3 mutation, these results extend the contribution of perturbed BMP signaling to human disease and potentially implicate multi-allelic inheritance of BMP variants in developmental disorders.


Assuntos
Anormalidades do Olho/genética , Fator 3 de Diferenciação de Crescimento/genética , Músculo Esquelético/anormalidades , Mutação , Sequência de Aminoácidos , Animais , Linhagem Celular , Anormalidades do Olho/metabolismo , Feminino , Fator 3 de Diferenciação de Crescimento/química , Fator 3 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Linhagem , Alinhamento de Sequência , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Mol Vis ; 18: 1301-11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22690109

RESUMO

PURPOSE: Manitoba Oculotrichoanal (MOTA) syndrome is an autosomal recessive disorder present in First Nations families that is characterized by ocular (cryptophthalmos), facial, and genital anomalies. At the commencement of this study, its genetic basis was undefined. METHODS: Homozygosity analysis was employed to map the causative locus using DNA samples from four probands of Cree ancestry. After single nucleotide polymorphism (SNP) genotyping, data were analyzed and exported to PLINK to identify regions identical by descent (IBD) and common to the probands. Candidate genes within and adjacent to the IBD interval were sequenced to identify pathogenic variants, with analyses of potential deletions or duplications undertaken using the B-allele frequency and log(2) ratio of SNP signal intensity. RESULTS: Although no shared IBD region >1 Mb was evident on preliminary analysis, adjusting the criteria to permit the detection of smaller homozygous IBD regions revealed one 330 Kb segment on chromosome 9p22.3 present in all 4 probands. This interval comprising 152 SNPs, lies 16 Kb downstream of FRAS1-related extracellular matrix protein 1 (FREM1), and no copy number variations were detected either in the IBD region or FREM1. Subsequent sequencing of both genes in the IBD region, followed by FREM1, did not reveal any mutations. CONCLUSIONS: This study illustrates the utility of studying geographically isolated populations to identify genomic regions responsible for disease through analysis of small numbers of affected individuals. The location of the IBD region 16 kb from FREM1 suggests the phenotype in these patients is attributable to a variant outside of FREM1, potentially in a regulatory element, whose identification may prove tractable to next generation sequencing. In the context of recent identification of FREM1 coding mutations in a proportion of MOTA cases, characterization of such additional variants offers scope both to enhance understanding of FREM1's role in cranio-facial biology and may facilitate genetic counselling in populations with high prevalences of MOTA to reduce the incidence of this disorder.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 9/genética , Coloboma/genética , Etnicidade/genética , Heterogeneidade Genética , Hipertelorismo/genética , Receptores de Interleucina/genética , Anormalidades Múltiplas/patologia , Adulto , Alelos , Canal Anal/anormalidades , Canal Anal/patologia , Pré-Escolar , Coloboma/patologia , Feminino , Efeito Fundador , Frequência do Gene , Genótipo , Homozigoto , Humanos , Hipertelorismo/patologia , Desequilíbrio de Ligação , Manitoba , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Índice de Gravidade de Doença
18.
Hum Mol Genet ; 18(6): 1110-21, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19129173

RESUMO

Proteins of the bone morphogenetic protein (BMP) family are known to have a role in ocular and skeletal development; however, because of their widespread expression and functional redundancy, less progress has been made identifying the roles of individual BMPs in human disease. We identified seven heterozygous mutations in growth differentiation factor 6 (GDF6), a member of the BMP family, in patients with both ocular and vertebral anomalies, characterized their effects with a SOX9-reporter assay and western analysis, and demonstrated comparable phenotypes in model organisms with reduced Gdf6 function. We observed a spectrum of ocular and skeletal anomalies in morphant zebrafish, the latter encompassing defective tail formation and altered expression of somite markers noggin1 and noggin2. Gdf6(+/-) mice exhibited variable ocular phenotypes compatible with phenotypes observed in patients and zebrafish. Key differences evident between patients and animal models included pleiotropic effects, variable expressivity and incomplete penetrance. These data establish the important role of this determinant in ocular and vertebral development, demonstrate the complex genetic inheritance of these phenotypes, and further understanding of BMP function and its contributions to human disease.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Fator 6 de Diferenciação de Crescimento/genética , Penetrância , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Genes Reporter , Fator 6 de Diferenciação de Crescimento/química , Humanos , Camundongos , Modelos Animais , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Oligonucleotídeos Antissenso/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
19.
CMAJ ; 188(6): 449-450, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044787
20.
EBioMedicine ; 67: 103360, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33975254

RESUMO

Ocular morphogenesis in vertebrates is a highly organized process, orchestrated largely by intrinsic genetic programs that exhibit stringent spatiotemporal control. Alternations in these genetic instructions can lead to hereditary or nonhereditary congenital disorders, a major cause of childhood visual impairment, and contribute to common late-onset blinding diseases. Currently, limited treatment options exist for clinical phenotypes involving eye development. This review summarizes recent advances in our understanding of early-onset ocular disorders and highlights genetic complexities in development and diseases, specifically focusing on coloboma, congenital glaucoma and Leber congenital amaurosis. We also discuss innovative paradigms for potential therapeutic modalities.


Assuntos
Oftalmopatias Hereditárias/genética , Criança , Olho/embriologia , Olho/metabolismo , Oftalmopatias Hereditárias/patologia , Oftalmopatias Hereditárias/terapia , Terapia Genética/métodos , Humanos , Terapia de Alvo Molecular/métodos , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA