Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 37(5): 1015-22, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12553976

RESUMO

Water samples were collected in July 2001 from the Chena River in central Alaska. The natural organic matter (NOM) was size fractionated into particulate (POM,>0.45 microm), colloidal (COM,1kDa-0.45 microm) and dissolved (DOM,<1k Da) organic matter fractions, using filtration and ultrafiltration. The size-fractionated organic matter was then analyzed for organic carbon (OC) and nitrogen (N), isotopic (delta13C and delta15N) and molecular composition, using continuous flow isotope ratio mass spectrometry and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Results of phase partitioning showed that, on average, about 6% of OC and 16% of N occurred in the form of POM while 66% of OC and 57% of N occurred in the form of COM, and 28% of the OC and 27% of the N were in the DOM form. Organic matter in the river water was found to be highly heterogeneous in terms of chemical composition and isotopic signatures. The C/N ratio was as low as 16+/-1 in the POM (n=2) to as high as 48+/-1 in the COM (n=3) and 38+/-4 in the DOM (n=3), suggesting a diagenetically younger POM. Values of delta13C increased with decreasing size, varying from -29.59+/-0.45% in the POM to -27.47+/-0.06% in the COM to -16.93+/-0.08% in the DOM. In contrast, values of delta15N decreased with decreasing size, from 2.64% in POM to 1.64% in COM to 1.33% in DOM. These results, together with radiocarbon measurements, suggest a preferential decomposition of lighter C isotope (12C) and heavier N isotopic (15N) from POM to COM to DOM. Results of py-GC/MS showed that the percentage of polysaccharides decreased with decreasing size, further supporting a degradation pathway of NOM from POM to COM and DOM in Chena River waters. More studies are needed to examine the seasonal and spatial variations of size-fractionated organic matter.


Assuntos
Compostos Orgânicos/análise , Poluentes da Água/análise , Alaska , Isótopos de Carbono/análise , Coloides , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Isótopos de Nitrogênio/análise , Tamanho da Partícula
2.
Environ Sci Technol ; 39(14): 5356-62, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16082967

RESUMO

Emissions from gasoline and diesel engines vary on time scales including diurnal, weekly, and decadal. Temporal patterns differ for these two engine types that are used predominantly for passenger travel and goods movement, respectively. Rapid growth in diesel fuel use and decreasing NOx emission rates from gasoline engines have led to altered emission profiles. During the 1990s, on-road use of diesel fuel grew 3 times faster than gasoline. Over the same time period, the NOx emission rate from gasoline engines in California was reduced by a factor of approximately 2, while the NOx emission rate from diesel engines decreased only slightly. Diesel engines therefore grew in both relative and absolute terms as a source of NOx, accounting for about half of all on-road NO, emissions as of 2000. Diesel truck emissions decrease by 60-80% on weekends. Counterintuitive responses to these emission changes are seen in measured concentrations of ozone. In contrast, elemental carbon (EC) concentrations decrease on weekends as expected. Weekly and diurnal patterns in diesel truck activity contribute to variability in the ratio of organic carbon (OC) to EC in primary source emissions, and this could be a source of bias in assessments of the importance of secondary organic aerosol.


Assuntos
Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Emissões de Veículos/análise , Atmosfera , Condução de Veículo , Periodicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA