Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Microbiol ; 15: 1354696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500580

RESUMO

Salmonella is one of the most important zoonotic pathogens and is mostly transmitted through food of animal origin. Application of bacteriophages is a promising tool to biocontrol Salmonella on both food and food contact surfaces. In this study, we evaluated the effectiveness of a six-phage cocktail for the reduction of Salmonella Enteritidis and a mixture of five major Salmonella serotypes (S. Enteritidis, Salmonella Typhimurium, Salmonella Infantis, Salmonella Paratyphi B, and Salmonella Indiana) on chicken skin and stainless steel. A phage cocktail with a final concentration of 107 PFU/cm2 was sprayed on these surfaces. After adding the phage cocktail, the samples were incubated at RT (~23°C) for different periods of time. The phage cocktail caused a significant reduction of S. Enteritidis and the mixed culture on chicken skin 30 min after phage addition, with 1.8 log10 and 1 log10 units, respectively. Reduction rates (1.2-1.7 log10 units) on stainless steel after 30 min were similar. Four hours after addition, the phage cocktail caused a significant reduction on both surfaces up to 3 log10 units on chicken skin and 2.4 log10 units on stainless steel. In a further experiment, bacteria added to stainless steel were not allowed to dry to simulate a fresh bacterial contamination. In this case, the bacterial count of S. Enteritidis was reduced below the detection limit after 2 h. The results demonstrate that this phage cocktail has potential to be used in post-harvest applications to control Salmonella contaminations.

2.
Microorganisms ; 11(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764141

RESUMO

Salmonella are important pathogenic bacteria and, following Campylobacter, they are the second most common cause of bacterial foodborne infections worldwide. To reduce the presence of bacteria along the food chain, the application of bacteriophages (phages) may be a promising tool. In this study, the lytic properties of six phages against five relevant Salmonella serotypes (S. Enteritidis, S. Typhimurium, S. Infantis, S. Paratyphi B and S. Indiana) were analyzed. Three phages were able to lyse all five serotypes. We determined the lytic potential of each phage on indicator strains in vitro at room temperature (RT) and at 37 °C using low multiplicities of infection (MOIs). Most phages reduced their host more efficiently at RT than at 37 °C, even at the lowest MOI of 0.001. Following this, the lytic activity of a cocktail comprising five phages (MOI = 0.1) was examined with each of the five serotypes and a mix of them at RT, 15, 12, 10, 8 and 6 °C. All cultures of single serotypes as well as the mixture of strains were significantly reduced at temperatures as low as 8 °C. For single serotypes, reductions of up to 5 log10 units and up to 2.3 log10 units were determined after 6 h (RT) and 40 h (8 °C), respectively. The mixture of strains was reduced by 1.7 log10 units at 8 °C. The data clearly suggest that these phages are suitable candidates for biocontrol of various Salmonella serotypes under food manufacturing conditions.

3.
Front Microbiol ; 14: 1136638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025628

RESUMO

The primary contaminants in poultry are Salmonella enterica, Campylobacter jejuni, Escherichia coli, and Staphylococcus aureus. Their pathogenicity together with the widespread of these bacteria, contributes to many economic losses and poses a threat to public health. With the increasing prevalence of bacterial pathogens being resistant to most conventional antibiotics, scientists have rekindled interest in using bacteriophages as antimicrobial agents. Bacteriophage treatments have also been investigated as an alternative to antibiotics in the poultry industry. Bacteriophages' high specificity may allow them only to target a specific bacterial pathogen in the infected animal. However, a tailor-made sophisticated cocktail of different bacteriophages could broaden their antibacterial activity in typical situations with multiple clinical strains infections. Bacteriophages may not only be used in terms of reducing bacterial contamination in animals but also, under industrial conditions, they can be used as safe disinfectants to reduce contamination on food-contact surfaces or poultry carcasses. Nevertheless, bacteriophage therapies have not been developed sufficiently for widespread use. Problems with resistance, safety, specificity, and long-term stability must be addressed in particular. This review highlights the benefits, challenges, and current limitations of bacteriophage applications in the poultry industry.

4.
Pharmaceuticals (Basel) ; 13(3)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110980

RESUMO

The lytic efficacy of bacteriophages against Staphylococcus aureus isolates from bovine milk was investigated in vitro, regarding possible applications in the therapy of udder inflammation caused by bacterial infections (mastitis). The host range of sequenced, lytic bacteriophages was determined against a collection of 92 Staphylococcus (S.) aureus isolates. The isolates originated from quarter foremilk samples of clinical and subclinical mastitis cases. A spot test and a subsequent plaque assay were used to determine the phage host range. According to their host range, propagation and storage properties, three phages, STA1.ST29, EB1.ST11, and EB1.ST27, were selected for preparing a bacteriophage mixture (1:1:1), which was examined for its lytic activity against S. aureus in pasteurized and raw milk. It was found that almost two thirds of the isolates could be lysed by at least one of the tested phages. The bacteriophage mixture was able to reduce the S. aureus germ density in pasteurized milk and its reduction ability was maintained in raw milk, with only a moderate decrease compared to the results in pasteurized milk. The significant reduction ability of the phage mixture in raw milk promotes further in vivo investigation.

5.
Food Chem Toxicol ; 145: 111682, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805341

RESUMO

Listeria monocytogenes is a well-known pathogen responsible for the severe foodborne disease listeriosis. The control of L. monocytogenes occurrence in seafood products and seafood processing environments is an important challenge for the seafood industry and the public health sector. However, bacteriophage biocontrol shows great potential to be used as safety control measure in seafood. This review provides an update on Listeria-specific bacteriophages, focusing on their application as a safe and natural strategy to prevent L. monocytogenes contamination and growth in seafood products and seafood processing environments. Furthermore, the main properties required from bacteriophages intended to be used as biocontrol tools are summarized and emerging strategies to overcome the current limitations are considered. Also, major aspects relevant for bacteriophage production at industrial scale, their access to the market, as well as the current regulatory status of bacteriophage-based solutions for Listeria biocontrol are discussed.


Assuntos
Bacteriófagos/fisiologia , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/virologia , Listeriose/microbiologia , Alimentos Marinhos/microbiologia , Animais , Surtos de Doenças , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Listeria monocytogenes/fisiologia , Listeriose/epidemiologia , Listeriose/prevenção & controle
6.
Viruses ; 12(12)2020 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352791

RESUMO

Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Terapia por Fagos , Doenças das Aves Domésticas/prevenção & controle , Animais , Bacteriólise , Bacteriófagos/genética , Biofilmes , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/veterinária , Genoma Viral , Humanos
7.
Pathogens ; 9(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316373

RESUMO

Among intestinal coliform microbes in the broiler gut, there are potentially pathogenic Escherichia (E.) coli that can cause avian colibacillosis. The treatment with antibiotics favors the selection of multidrug-resistant bacteria and an alternative to this treatment is urgently required. A chicken model of intestinal colonization with an apathogenic model strain of E. coli was used to test if oral phage application can prevent or reduce the gut colonization of extraintestinal pathogenic E. coli variants in two individual experiments. The E. coli strain E28 was used as a model strain, which could be differentiated from other E. coli strains colonizing the broiler gut, and was susceptible to all cocktail phages applied. In the first trial, a mixture of six phages was continuously applied via drinking water. No reduction of the model E. coli strain E28 occurred, but phage replication could be demonstrated. In the second trial, the applied mixture was limited to the four phages, which showed highest efficacy in vitro. E. coli colonization was reduced in this trial, but again, no reduction of the E. coli strain E28 was observed. The results of the trials presented here can improve the understanding of the effect of phages on single strains in the multi-strain microbiota of the chicken gut.

8.
Genome Announc ; 5(22)2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572305

RESUMO

In this study, we sequenced the complete genome of the multidrug-resistant Escherichia coli strain E28, which was used as an indicator strain for phage therapy in vivo We used a combination of single-molecule real-time and Illumina sequencing technology to reveal the presence of a spontaneously inducible prophage.

9.
J Virol ; 76(19): 9695-701, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12208948

RESUMO

Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit and does not represent a recent acquisition of the phage. The P1 and E. coli SSB proteins are fully functionally interchangeable. SSB-P1 is nonessential for phage growth in an exponentially growing E. coli host, and it is sufficient to promote bacterial growth in the absence of the E. coli SSB protein. Expression studies showed that the P1 ssb gene is transcribed only, in an rpoS-independent fashion, during stationary-phase growth in E. coli. Mixed infection experiments demonstrated that a wild-type phage has a selective advantage over an ssb-null mutant when exposed to a bacterial host in the stationary phase. These results reconciled the observed evolutionary conservation with the seemingly redundant presence of ssb genes in many bacteriophages and conjugative plasmids.


Assuntos
Bacteriófago P1/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas Virais/fisiologia , Bacteriófago P1/crescimento & desenvolvimento , Replicação do DNA , Filogenia
10.
Mol Microbiol ; 48(6): 1621-31, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12791143

RESUMO

The stringent starvation protein A (SspA), an Escherichia coli RNA polymerase (RNAP)-associated protein, has been reported to be essential for lytic growth of bacteriophage P1. Unlike P1 early promoters, P1 late promoters are not recognized by RNAP alone. A phage-encoded early protein, Lpa (late promoter activator protein, formerly called gp10), has been shown to be required for P1 late transcription in vivo. Here, we demonstrate that SspA is a transcription activator for P1 late genes. Our results indicated that Lpa is not limiting in an sspA mutant. However, the transcription of P1 late genes was deficient in an sspA mutant in vivo. We demonstrated that SspA/Lpa are required for transcription activation of the P1 late promoter Ps in vitro. In addition, SspA and Lpa were shown to facilitate the binding of RNAP to Ps late promoter DNA. Activation of late transcription by SspA/Lpa was dependent on holoenzyme containing sigma70 but not sigmaS, indicating that the two activators discriminate between the two forms of the holoenzyme. Furthermore, P1 early gene expression was downregulated in the wild-type background, whereas it persisted in the sspA mutant background, indicating that SspA/Lpa mediate the transcriptional switch from the early to the late genes during P1 lytic growth. Thus, this work provides the first evidence for a function of the E. coli RNAP-associated protein SspA.


Assuntos
Bacteriófago P1/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Ativação Transcricional , Proteínas Virais/genética , Bacteriófago P1/genética , Bacteriófago P1/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Mutação , Regiões Promotoras Genéticas , Proteínas Virais/metabolismo
11.
J Bacteriol ; 186(21): 7032-68, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15489417

RESUMO

P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.


Assuntos
Bacteriófago P1/genética , Genoma Viral , Proteínas Virais/genética , Sequência de Aminoácidos , Bacteriófago P1/química , Bacteriófago P1/metabolismo , Sequência de Bases , Sítios de Ligação , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA