Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Pathol ; 194(6): 1137-1153, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749609

RESUMO

Preclinical models that display spontaneous metastasis are necessary to improve the therapeutic options for hormone receptor-positive breast cancers. Within this study, detailed cellular and molecular characterization was conducted on MCa-P1362, a newly established mouse model of metastatic breast cancer that is syngeneic in BALB/c mice. MCa-P1362 cancer cells express estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2. MCa-P1362 cancer cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for growth and tumor progression. Analysis of MCa-P1362 tumor explants revealed the tumors contained a mixture of cancer cells and mesenchymal stromal cells. Through transcriptomic and functional analyses of both cancer and stromal cells, stem cells were detected within both populations. Functional studies demonstrated that MCa-P1362 cancer stem cells drove tumor initiation, whereas stromal cells from these tumors contributed to drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of breast tumor progression and therapeutic resistance.


Assuntos
Adenocarcinoma , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Receptor ErbB-2 , Receptores de Estrogênio , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Feminino , Humanos , Receptor ErbB-2/metabolismo , Camundongos , Receptores de Estrogênio/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/metabolismo
2.
Nucleic Acids Res ; 46(21): 11202-11213, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30137413

RESUMO

DYRK1A, dual-specificity tyrosine phosphorylation-regulated kinase 1A, which is linked to mental retardation and microcephaly, is a member of the CMGC group of kinases. It has both cytoplasmic and nuclear functions, however, molecular mechanisms of how DYRK1A regulates gene expression is not well understood. Here, we identify two histone acetyltransferases, p300 and CBP, as interaction partners of DYRK1A through a proteomics study. We show that overexpression of DYKR1A causes hyperphosphorylation of p300 and CBP. Using genome-wide location (ChIP-sequencing) analysis of DYRK1A, we show that most of the DYRK1A peaks co-localize with p300 and CBP, at enhancers or near the transcription start sites (TSS). Modulation of DYRK1A, by shRNA mediated reduction or transfection mediated overexpression, leads to alteration of expression of downstream located genes. We show that the knockdown of DYRK1A results in a significant loss of H3K27acetylation at these enhancers, suggesting that DYRK1A modulates the activity of p300/CBP at these enhancers. We propose that DYRK1A functions in enhancer regulation by interacting with p300/CBP and modulating their activity. Overall, DYRK1A function in the regulation of enhancer activity provides a new mechanistic understanding of DYRK1A mediated regulation of gene expression, which may help in better understanding of the roles of DYRK1A in human pathologies.


Assuntos
Proteína de Ligação a CREB/genética , Elementos Facilitadores Genéticos/genética , Histona Acetiltransferases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Transcrição de p300-CBP/genética , Proteína de Ligação a CREB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Células THP-1 , Sítio de Iniciação de Transcrição , Fatores de Transcrição de p300-CBP/metabolismo , Quinases Dyrk
3.
J Immunol ; 198(3): 1274-1284, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011935

RESUMO

Upon virus infection, host cells use retinoic-acid-inducible geneI I (RIG-I)-like receptors to recognize viral RNA and activate type I IFN expression. To investigate the role of protein methylation in the antiviral signaling pathway, we screened all the SET domain-containing proteins and identified TTLL12 as a negative regulator of RIG-I signaling. TTLL12 contains SET and TTL domains, which are predicted to have lysine methyltransferase and tubulin tyrosine ligase activities, respectively. Exogenous expression of TTLL12 represses IFN-ß expression induced by Sendai virus. TTLL12 deficiency by RNA interference and CRISPR-gRNA techniques increases the induced IFN-ß expression and inhibits virus replication in the cell. The global gene expression profiling indicated that TTLL12 specifically inhibits the expression of the downstream genes of innate immunity pathways. Cell fractionation and fluorescent staining indicated that TTLL12 is localized in the cytosol. The mutagenesis study suggested that TTLL12's ability to repress the RIG-I pathway is probably not dependent on protein modifications. Instead, TTLL12 directly interacts with virus-induced signaling adaptor (VISA), TBK1, and IKKε, and inhibits the interactions of VISA with other signaling molecules. Taken together, our findings demonstrate TTLL12 as a negative regulator of RNA-virus-induced type I IFN expression by inhibiting the interaction of VISA with other proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Transporte/fisiologia , Interferon Tipo I/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Transporte/análise , Linhagem Celular , Citosol/química , Proteína DEAD-box 58/fisiologia , Humanos , Quinase I-kappa B/fisiologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/fisiologia , Receptores Imunológicos , Replicação Viral
4.
Nucleic Acids Res ; 45(1): 92-105, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27614073

RESUMO

Trimethylation of histone H3K36 is a chromatin mark associated with active gene expression, which has been implicated in coupling transcription with mRNA splicing and DNA damage response. SETD2 is a major H3K36 trimethyltransferase, which has been implicated as a tumor suppressor in mammals. Here, we report the regulation of SETD2 protein stability by the proteasome system, and the identification of SPOP, a key subunit of the CUL3 ubiquitin E3 ligase complex, as a SETD2-interacting protein. We demonstrate that SPOP is critically involved in SETD2 stability control and that the SPOP/CUL3 complex is responsible for SETD2 polyubiquitination both in vivo and in vitro ChIP-Seq analysis and biochemical experiments demonstrate that modulation of SPOP expression confers differential H3K36me3 on SETD2 target genes, and induce H3K36me3-coupled alternative splicing events. Together, these findings establish a functional connection between oncogenic SPOP and tumor suppressive SETD2 in the dynamic regulation of gene expression on chromatin.


Assuntos
Processamento Alternativo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Proteínas Nucleares/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Metilação , Células-Tronco Neoplásicas , Proteínas Nucleares/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Ubiquitinação
5.
J Cell Sci ; 129(12): 2343-53, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127229

RESUMO

Unlike other members of the polycomb group protein family, EZH1 has been shown to positively associate with active transcription on a genome-wide scale. However, the underlying mechanism for this behavior still remains elusive. Here, we report that EZH1 physically interacts with UXT, a small chaperon-like transcription co-activator. UXT specifically interacts with EZH1 and SUZ12, but not EED. Similar to upon knockdown of UXT, knockdown of EZH1 or SUZ12 through RNA interference in the cell impairs the transcriptional activation of nuclear factor (NF)-κB target genes induced by TNFα. EZH1 deficiency also increases TNFα-induced cell death. Interestingly, chromatin immunoprecipitation and the following next-generation sequencing analysis show that H3K27 mono-, di- and tri-methylation on NF-κB target genes are not affected in EZH1- or UXT-deficient cells. EZH1 also does not affect the translocation of the p65 subunit of NF-κB (also known as RELA) from the cytosol to the nucleus. Instead, EZH1 and SUZ12 regulate the recruitment of p65 and RNA Pol II to target genes. Taken together, our study shows that EZH1 and SUZ12 act as positive regulators for NF-κB signaling and demonstrates that EZH1, SUZ12 and UXT work synergistically to regulate pathway activation in the nucleus.


Assuntos
Regulação da Expressão Gênica , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação/efeitos dos fármacos , Chaperonas Moleculares , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Polimerase II/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
6.
Front Immunol ; 15: 1449291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211044

RESUMO

Cancer dissemination to lymph nodes (LN) is associated with a worse prognosis, increased incidence of distant metastases and reduced response to therapy. The LN microenvironment puts selective pressure on cancer cells, creating cells that can survive in LN as well as providing survival advantages for distant metastatic spread. Additionally, the presence of cancer cells leads to an immunosuppressive LN microenvironment, favoring the evasion of anti-cancer immune surveillance. However, recent studies have also characterized previously unrecognized roles for tumor-draining lymph nodes (TDLNs) in cancer immunotherapy response, including acting as a reservoir for pre-exhausted CD8+ T cells and stem-like CD8+ T cells. In this review, we will discuss the spread of cancer cells through the lymphatic system, the roles of TDLNs in metastasis and anti-cancer immune responses, and the therapeutic opportunities and challenges in targeting LN metastasis.


Assuntos
Metástase Linfática , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Metástase Linfática/imunologia , Sistema Linfático/imunologia , Sistema Linfático/patologia , Linfonodos/imunologia , Linfonodos/patologia , Imunoterapia/métodos , Evasão Tumoral , Linfócitos T CD8-Positivos/imunologia
7.
Adv Radiat Oncol ; 9(5): 101461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550362

RESUMO

Purpose: Sexual and gender minority (SGM) individuals have an increased risk of poor health outcomes, in part due to knowledge and training gaps in health care education. This study sought to evaluate the knowledge, attitudes, and practice behaviors of various health care role groups within radiation oncology toward SGM patients. Methods and Materials: A 38-item web-based survey was emailed to 1045 staff across 2 large radiation oncology departments. The survey assessed demographics, attitudes, knowledge, and practice behaviors. χ2 tests were performed to explore differences in survey responses by age, political affiliation, religious identity, year since graduation, and role groups. One-way analysis of variance tests were conducted to determine differences between respondents' confidence in knowledge and performance on the knowledge section of the survey. Thematic analysis was applied to the open discussion section. Results: Of the 223 respondents, 103 clinicians (physicians/advanced practice providers/nurses) and 120 nonclinicians (administrative staff, medical assistants, and other nonmedical staff) participated in the survey (21.3% response rate): 72.6% answered the knowledge questions; 93.5% stated they were comfortable treating sexual minorities, or lesbian, gay, bisexual, and queer + patients; 88% indicated comfort in treating transgender patients; 36.6% stated they were confident in their knowledge of the health needs of transgender patients; and 50.3% expressed confidence in treating lesbian, gay, bisexual, and queer + patients. Fewer nonclinicians than clinicians thought that gender identity, sexual orientation, and sex assigned at birth were important to provide the best care (P < .05). The open comments section identified key themes, including the belief that current educational tools are not helpful, desire for more educational formats (lectures, case-based learning, seminars), and an overall interest in SGM health education. Conclusions: Most staff feel comfortable in treating SGM patients but are less confident in the distinct needs of this population. Knowledge gaps persist for both clinicians and nonclinicians, indicating a need for further training specific to oncology care.

8.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37781599

RESUMO

Surgical removal of lymph nodes (LNs) to prevent metastatic recurrence, including sentinel lymph node biopsy (SLNB) and completion lymph node dissection (CLND), are performed in routine practice. However, it remains controversial whether removing LNs which are critical for adaptive immune responses impairs immune checkpoint blockade (ICB) efficacy. Here, our retrospective analysis demonstrated that stage III melanoma patients retain robust response to anti-PD1 inhibition after CLND. Using orthotopic murine mammary carcinoma and melanoma models, we show that responses to ICB persist in mice after TDLN resection. Mechanistically, after TDLN resection, antigen can be re-directed to distant LNs, which extends the responsiveness to ICB. Strikingly, by evaluating head and neck cancer patients treated by neoadjuvant durvalumab and irradiation, we show that distant LNs (metastases-free) remain reactive in ICB responders after tumor and disease-related LN resection, hence, persistent anti-cancer immune reactions in distant LNs. Additionally, after TDLN dissection in murine models, ICB delivered to distant LNs generated greater survival benefit, compared to systemic administration. In complete responders, anti-tumor immune memory induced by ICB was systemic rather than confined within lymphoid organs. Based on these findings, we constructed a computational model to predict free antigen trafficking in patients that will undergo LN dissection.

9.
Cancer Immunol Res ; 12(4): 400-412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260999

RESUMO

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.


Assuntos
Colangiocarcinoma , Cisplatino , Gencitabina , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Cisplatino/uso terapêutico , Antígeno CTLA-4/antagonistas & inibidores , Gencitabina/uso terapêutico , Microambiente Tumoral
10.
bioRxiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333242

RESUMO

Preclinical models that display spontaneous metastasis are necessary to improve therapeutic options for hormone receptor positive breast cancers. In this study, we conducted a detailed cellular and molecular characterization of MCa-P1362, a novel syngeneic Balb/c mouse model of metastatic breast cancer. MCa-P1362 cancer cells expressed estrogen receptors (ER), progesterone receptors (PR), and HER-2 receptors. MCa-P1362 cells proliferate in vitro and in vivo in response to estrogen, yet do not depend on steroid hormones for tumor progression. Further characterization of MCa-P1362 tumor explants shows that they contain a mixture of epithelial cancer cells and stromal cells. Based on transcriptomic and functional analyses of cancer and stromal cells, stem cells are present in both populations. Functional studies demonstrate that crosstalk between cancer and stromal cells promotes tumor growth, metastasis, and drug resistance. MCa-P1362 may serve as a useful preclinical model to investigate the cellular and molecular basis of hormone receptor positive tumor progression and therapeutic resistance.

11.
Res Sq ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461473

RESUMO

Secondary lymphedema is a debilitating condition driven by impaired regeneration of lymphatic vasculature following lymphatic injury, surgical removal of lymph nodes in cancer patients or infection. However, the extent to which collecting lymphatic vessels regenerate following injury remains unclear. Here, we employed a novel mouse model of lymphatic injury in combination with state-of-the-art lymphatic imaging to demonstrate that the implantation of an optimized fibrin gel following lymphatic vessel injury leads to the growth and reconnection of the injured lymphatic vessel network, resulting in the restoration of lymph flow to the draining node. Intriguingly, we found that fibrin implantation elevates the tissue levels of CCL5, a potent macrophage-recruiting chemokine. Notably, CCL5-KO mice displayed a reduced ability to reconnect injured vessels following fibrin gel implantation. These novel findings shed light on the mechanisms underlying lymphatic regeneration and suggest that enhancing CCL5 signaling may be a promising therapeutic strategy for enhancing lymphatic regeneration.

12.
J Ethnopharmacol ; 311: 116407, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001769

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Inonotus hispidus (I. hispidus), known as shaggy bracket, has been used extensively in China and some East Asian countries as a traditional medicinal macrofungus to treat difficult diseases, such as diabetes, gout, and arthritis. Modern pharmacological research has shown that I. hispidus has an important application value in antitumor treatment. However, the main anti-cervical cancer activity substances from its mycelia and its mechanisms are still not clear. AIMS OF THE STUDY: To enrich the germplasm resources of I. hispidus, to reveal the antitumor activity of the extract from the mycelium of I. hispidus against cervical cancer, and to preliminarily analyze its action mechanism. MATERIALS AND METHODS: The SH3 strain was isolated from wild fruiting bodies and identified by morphology and molecular biology. The antitumor active component from the mycelium of I. hispidus was isolated and identified with liquid chromatography-tandem mass spectrometry. The cell viability was assessed by MTT assay. The cell cycle distribution, apoptotic cell detection, and mitochondrial membrane potential were detected by flow cytometer. The expression of apoptosis-related proteins was assessed by Western blotting. The inhibition of tumor growth in vivo was assessed by a mouse xenograft model. RESULTS: The SH3 strain was isolated and identified as a new strain of I. hispidus. The antitumor active component containing cyclic peptides from the mycelium of I. hispidus (CCM) was isolated for the first time. In addition, we found that CCM had a strong inhibitory effect on HeLa proliferation in vitro and in vivo. Mechanically, the CCM blocked the cell cycle at the G0/G1 phase, decreased the mitochondrial membrane potential, and eventually promoted apoptosis of HeLa cells through the mitochondria-mediated pathway by upregulating the expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3 and downregulating the expression level of Bcl-2. CONCLUSIONS: Our study not only enriches the strain resources of I. hispidus but also confirms that the mycelium of this strain has active components that can inhibit cervical cancer. This is highly significant for the development of active drugs and drug lead molecules for treating cervical cancer.


Assuntos
Apoptose , Extratos Vegetais , Humanos , Camundongos , Animais , Células HeLa , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Mitocôndrias , Linhagem Celular Tumoral , Proliferação de Células
13.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37341991

RESUMO

Tumor-draining lymph nodes (TDLNs) are important for tumor antigen-specific T cell generation and effective anticancer immune responses. However, TDLNs are often the primary site of metastasis, causing immune suppression and worse outcomes. Through cross-species single-cell RNA-Seq analysis, we identified features defining cancer cell heterogeneity, plasticity, and immune evasion during breast cancer progression and lymph node metastasis (LNM). A subset of cancer cells in the lymph nodes exhibited elevated MHC class II (MHC-II) gene expression in both mice and humans. MHC-II+ cancer cells lacked costimulatory molecule expression, leading to regulatory T cell (Treg) expansion and fewer CD4+ effector T cells in TDLNs. Genetic knockout of MHC-II reduced LNM and Treg expansion, while overexpression of the MHC-II transactivator, Ciita, worsened LNM and caused excessive Treg expansion. These findings demonstrate that cancer cell MHC-II expression promotes metastasis and immune evasion in TDLNs.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/patologia , Plasticidade Celular , Linfonodos , Linfócitos T Reguladores , Metástase Linfática/patologia , Tolerância Imunológica , Melanoma Maligno Cutâneo
14.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747853

RESUMO

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Anti-PD-L1 immunotherapy combined with gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers, but responses are seen only in a minority of patients. Here, we studied the roles of anti-PD1 and anti-CTLA-4 immune checkpoint blockade (ICB) therapies when combined with gemcitabine/cisplatin and the mechanisms of treatment benefit in orthotopic murine ICC models. We evaluated the effects of the combined treatments on ICC vasculature and immune microenvironment using flow cytometry analysis, immunofluorescence, imaging mass cytometry, RNA-sequencing, qPCR, and in vivo T-cell depletion and CD8+ T-cell transfer using orthotopic ICC models and transgenic mice. Combining gemcitabine/cisplatin with anti-PD1 and anti-CTLA-4 antibodies led to substantial survival benefits and reduction of morbidity in two aggressive ICC models, which were ICB-resistant. Gemcitabine/cisplatin treatment increased the frequency of tumor-infiltrating lymphocytes and normalized the ICC vessels, and when combined with dual CTLA-4/PD1 blockade, increased the number of activated CD8+Cxcr3+IFN-γ+ T-cells. Depletion of CD8+ but not CD4+ T-cells compromised efficacy. Conversely, CD8+ T-cell transfer from Cxcr3-/- versus Cxcr3+/+ mice into Rag1-/- immunodeficient mice restored the anti-tumor effect of gemcitabine/cisplatin/ICB combination therapy. Finally, rational scheduling of the ICBs (anti-CTLA-4 "priming") with chemotherapy and anti-PD1 therapy achieved equivalent efficacy with continuous dosing while reducing overall drug exposure. In summary, gemcitabine/cisplatin chemotherapy normalizes vessel structure, increases activated T-cell infiltration, and enhances anti-PD1/CTLA-4 immunotherapy efficacy in aggressive murine ICC. This combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.

15.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014141

RESUMO

Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.

16.
PeerJ ; 10: e14130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213510

RESUMO

In recent years, a rare edible mushroom Stropharia rugosoannulata has become popular. S. rugosoannulata has the characteristics of easy cultivation, low cost, high output value, and low labor requirement, making its economic benefits significantly superior to those of other planting industries. Accumulating research demonstrates that cultivating edible fungus is advantageous for farming soil. The present experiment used idle croplands in winter for S. rugosoannulata cultivation. We explored the effects of S. rugosoannulata cultivation on soil properties and soil microbial community structure in paddy and dry fields, respectively. We cultivated S. rugosoannulata in the fields after planting chili and rice, respectively. The results showed that Chili-S. rugosoannulata and Rice-S. rugosoannulata planting patterns increased the yield, quality and amino acid content of S. rugosoannulata. By analyzing the soil properties, we found that the Chili-S. rugosoannulata and Rice-S. rugosoannulata cropping patterns increased the total nitrogen, available phosphorus, soil organic carbon, and available potassium content of the soil. We used 16s amplicons for bacteria and internal transcribed spacer (ITS) region for fungi to analyze the microbial communities in rhizosphere soils. Notably, S. rugosoannulata cultivation significantly increased the abundance of beneficial microorganisms such as Chloroflexi, Cladosporium and Mortierella and reduce the abundance of Botryotrichumin and Archaeorhizomyces. We consider S. rugosoannulata cultivation in cropland can improve soil properties, regulate the community structure of soil microorganisms, increase the expression abundance of beneficial organisms and ultimately improve the S. rugosoannulata yield and lay a good foundation for a new round of crops after this edible mushroom cultivation.


Assuntos
Agaricales , Oryza , Solo/química , Carbono/metabolismo , Microbiologia do Solo , Agaricales/metabolismo , Oryza/metabolismo , Produtos Agrícolas/metabolismo
17.
Front Microbiol ; 13: 967135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147857

RESUMO

Inonotus hispidus (I. hispidus) is a medicinal macrofungus that plays a key role in anti-tumor and antioxidant functions. To further understand and enhance the value of I. hispidus, we performed whole-genome sequencing and an analysis of its strain for the first time. I. hispidus was sequenced using the Illumina NovaSeq high-throughput sequencing platform. The genome length was 35,688,031 bp and 30 contigs, with an average length of 1,189,601.03 bp. Moreover, database alignment annotated 402 CAZyme genes and 93 functional genes involved in regulating secondary metabolites in the I. hispidus genome to find the greatest number of genes involved in terpenes in that genome, thus providing a theoretical basis for its medicinal value. Finally, the phylogenetic analysis and comparative genomic analysis of single-copy orthologous protein genes from other fungi in the same family were conducted; it was found that I. hispidus and Sanghuangporus baumii have high homology. Our results can be used to screen candidate genes for the nutritional utilization of I. hispidus and the development of high-yielding and high-quality I. hispidus via genetic means.

18.
Cells ; 10(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33808959

RESUMO

Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.


Assuntos
Linfonodos/patologia , Vasos Linfáticos/patologia , Neoplasias/patologia , Animais , Movimento Celular , Sobrevivência Celular , Humanos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/cirurgia , Metástase Linfática , Vasos Linfáticos/imunologia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/cirurgia , Invasividade Neoplásica , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Prognóstico , Evasão Tumoral
19.
Nat Biomed Eng ; 5(12): 1426-1436, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34282290

RESUMO

Strong and durable anticancer immune responses are associated with the generation of activated cancer-specific T cells in the draining lymph nodes. However, cancer cells can colonize lymph nodes and drive tumour progression. Here, we show that lymphocytes fail to penetrate metastatic lesions in lymph nodes. In tissue from patients with breast, colon, and head and neck cancers, as well as in mice with spontaneously developing breast-cancer lymph-node metastases, we found that lymphocyte exclusion from nodal lesions is associated with the presence of solid stress caused by lesion growth, that solid stress induces reductions in the number of functional high endothelial venules in the nodes, and that relieving solid stress in the mice increased the presence of lymphocytes in lymph-node lesions by about 15-fold. Solid-stress-mediated impairment of lymphocyte infiltration into lymph-node metastases suggests a therapeutic route for overcoming T-cell exclusion during immunotherapy.


Assuntos
Imunoterapia , Linfonodos , Animais , Humanos , Metástase Linfática , Linfócitos , Camundongos , Linfócitos T
20.
Oncogenesis ; 9(5): 57, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483180

RESUMO

Gene transcription is coordinately regulated by multiple transcription factors. However, a systematic approach is still lacking to identify co-regulators for transcription factors. Here, we performed ChIP-Seq analysis and predicted the regulators for p53-mediated transcription process, from which we confirmed the roles of GLIS2, MAZ and MEF2A in regulating p53 target genes. We revealed that GLIS2 selectively regulates the transcription of PUMA but not p21. GLIS2 deficiency caused the elevation of H3K27ac and p53 binding on the PUMA enhancer, and promoted PUMA expression. It increased the rate of apoptosis, but not cell cycle. Moreover, GLIS2 represses H3K27ac level on enhancers, regulates the gene expression related with focal adhesion and promotes cell migration, through inhibiting p300. Big data analysis supports GLIS2 as an oncogene in colon cancer, and perhaps other cancers. Taken together, we have predicted candidates for p53 transcriptional regulators, and provided evidence for GLIS2 as an oncogene through repressing enhancer activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA