Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925147

RESUMO

Perovskite solar cells (PSCs) with an "inverted" architecture are a key pathway for commercializing this emerging photovoltaic technology due to the better power conversion efficiency (PCE) and operational stability as compared to the "normal" device structure. Specifically, PCEs of the inverted PSCs have exceeded 25% owing to the development of improved self-assembled molecules (SAMs)1-5 and passivation strategies6-8. Nevertheless, poor wettability and agglomerations of SAMs9-12 will cause interfacial losses, impeding further improvement in PCE and stability. Herein, we report on molecular hybrid at the buried interface in inverted PSCs by co-assembling a multiple carboxylic acid functionalized aromatic compound of 4,4',4''-nitrilotribenzoicacid (NA) with a popular SAM of [4-(3,6-dime-thyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted PSCs demonstrated a record-certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving the highest certified PCE for inverted mini-modules at 22.74% (aperture area: 11.1 cm2). Our device also maintained 96.1% of its initial PCE after more than 2,400 hours of 1-sun operation in ambient air.

2.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103643

RESUMO

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Assuntos
Adipocinas , Perfilação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Macrófagos , Fosfoproteínas , Proteômica , Animais , Camundongos , Adipocinas/deficiência , Adipocinas/genética , Adipocinas/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Glicólise , Hipotermia/complicações , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ácido Láctico/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
3.
Wound Repair Regen ; 32(3): 301-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38308577

RESUMO

Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to  photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent  studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.


Assuntos
Antibacterianos , Bandagens , Hidrogéis , Fármacos Fotossensibilizantes , Infecção dos Ferimentos , Humanos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Hidrogéis/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
4.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400507

RESUMO

There has been a significant shift in research focus in recent years toward laser-induced graphene (LIG), which is a high-performance material with immense potential for use in energy storage, ultrahydrophobic water applications, and electronic devices. In particular, LIG has demonstrated considerable potential in the field of high-precision human motion posture capture using flexible sensing materials. In this study, we investigated the surface morphology evolution and performance of LIG formed by varying the laser energy accumulation times. Further, to capture human motion posture, we evaluated the performance of highly accurate flexible wearable sensors based on LIG. The experimental results showed that the sensors prepared using LIG exhibited exceptional flexibility and mechanical performance when the laser energy accumulation was optimized three times. They exhibited remarkable attributes, such as high sensitivity (~41.4), a low detection limit (0.05%), a rapid time response (response time of ~150 ms; relaxation time of ~100 ms), and excellent response stability even after 2000 s at a strain of 1.0% or 8.0%. These findings unequivocally show that flexible wearable sensors based on LIG have significant potential for capturing human motion posture, wrist pulse rates, and eye blinking patterns. Moreover, the sensors can capture various physiological signals for pilots to provide real-time capturing.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Humanos , Captura de Movimento , Eletrônica , Lasers
5.
Entropy (Basel) ; 26(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785677

RESUMO

Ensuring the safe and stable operation of high-speed trains necessitates real-time monitoring and diagnostics of their suspension systems. While machine learning technology is widely employed for industrial equipment fault diagnosis, its effective application relies on the availability of a large dataset with annotated fault data for model training. However, in practice, the availability of informational data samples is often insufficient, with most of them being unlabeled. The challenge arises when traditional machine learning methods encounter a scarcity of training data, leading to overfitting due to limited information. To address this issue, this paper proposes a novel few-shot learning method for high-speed train fault diagnosis, incorporating sensor-perturbation injection and meta-confidence learning to improve detection accuracy. Experimental results demonstrate the superior performance of the proposed method, which introduces perturbations, compared to existing methods. The impact of perturbation effects and class numbers on fault detection is analyzed, confirming the effectiveness of our learning strategy.

6.
Mol Pharmacol ; 104(1): 17-27, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37105671

RESUMO

Metabotropic glutamate receptor 7 (mGlu7) is a G protein coupled receptor that has demonstrated promise as a therapeutic target across a number of neurologic and psychiatric diseases. Compounds that modulate the activity of mGlu7, such as positive and negative allosteric modulators, may represent new therapeutic strategies to modulate receptor activity. The endogenous neurotransmitter associated with the mGlu receptor family, glutamate, exhibits low efficacy and potency in activating mGlu7, and surrogate agonists, such as the compound L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4), are often used for receptor activation and compound profiling. To understand the implications of the use of such agonists in the development of positive allosteric modulators (PAMs), we performed a systematic evaluation of receptor activation using a system in which mutations can be made in either protomer of the mGlu7 dimer; we employed mutations that prevent interaction with the orthosteric site as well as the G-protein coupling site of the receptor. We then measured increases in calcium levels downstream of a promiscuous G protein to assess the effects of mutations in one of the two protomers in the presence of two different agonists and three positive allosteric modulators. Our results reveal that distinct PAMs, for example N-[3-Chloro-4-[(5-chloro-2-pyridinyl)oxy]phenyl]-2-pyridinecarboxamide (VU0422288) and 3-(2,3-Difluoro-4-methoxyphenyl)-2,5-dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (VU6005649), do exhibit different maximal levels of potentiation with L-AP4 versus glutamate, but there appear to be common stable receptor conformations that are shared among all of the compounds examined here. SIGNIFICANCE STATEMENT: This manuscript describes the systematic evaluation of the mGlu7 agonists glutamate and L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) in the presence and absence of three distinct potentiators examining possible mechanistic differences. These findings demonstrate that mGlu7 potentiators display subtle variances in response to glutamate versus L-AP4.


Assuntos
Ácido Glutâmico , Regulação Alostérica/fisiologia , Ácido Glutâmico/farmacologia , Ácido Glutâmico/metabolismo
7.
Bioorg Med Chem Lett ; 80: 129106, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528230

RESUMO

Herein, we report on the further chemical optimization of the first reported mGlu7 positive allosteric modulator (PAM), VU6027459. Replacement of the quinoline core by a cinnoline scaffold increased mGlu7 PAM potency by âˆ¼ 10-fold, and concomitant introduction of a chiral tricyclic motif led to potent mGlu7 PAMs with enantioselective mGlu receptor selectivity profiles. Of these, VU6046980 emerged as a putative in vivo tool compound with excellent CNS penetration (Kp = 4.1; Kp,uu = 0.7) and efficacy in preclinical models. However, either off-target activity at the sigma-1 receptor or activity at a target not elucidated by large ancillary pharmacology panels led to sedation not driven by activation of mGlu7 (validated in Grm7 knockout mice). Thus, despite a significant advance, a viable mGlu7 PAM in vivo tool remains elusive.


Assuntos
Regulação Alostérica , Camundongos , Animais
8.
Inorg Chem ; 62(6): 2705-2714, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724403

RESUMO

Separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) poses a huge challenge in the reprocessing of spent nuclear fuel due to their similar chemical properties. N,N'-Diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) is a potential ligand for the extraction of An(III) from Ln(III), while there are still few reports on the effect of its substituent including electron-withdrawing and electron-donating groups on An(III)/Ln(III) separation. Herein, the interaction of Et-Tol-DAPhen ligands modified by the electron-withdrawing groups (CF3, Br) and electron-donating groups (OH) with Am(III)/Eu(III) ions was investigated using scalar relativistic density functional theory (DFT). The analyses of bond order, quantum theory of atoms in molecules (QTAIM), and molecular orbital (MO) indicate that the substitution groups have a slight effect on the electronic structures of the [M(L-X)(NO3)3] (X = CF3, Br, OH) complexes. However, the thermodynamic results suggest that a ligand with the electron-donating group (L-OH) improves the extraction ability of metal ions, and the ligand modified by the electron-withdrawing group (L-Br) has the best Am(III)/Eu(III) selectivity. This work could render new insights into understanding the effect of electron-withdrawing and electron-donating groups in tuning the selectivity of Et-Tol-DAPhen derivatives and pave the way for designing new ligands modified by substituted groups with better extraction ability and An(III)/Ln(III) selectivity.

9.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511299

RESUMO

Kiwifruit canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the main threat to kiwifruit production worldwide. Currently, there is no safe and effective disease prevention method; therefore, biological control technologies are being explored for Psa. In this study, Bacillus velezensis WL-23 was isolated from the leaf microbial community of kiwifruit and used to control kiwifruit cankers. Indoor confrontation experiments showed that both WL-23 and its aseptic filtrate had excellent inhibitory activity against the main fungal and bacterial pathogens of kiwifruit. Changes in OD600, relative conductivity, alkaline proteinase, and nucleic acid content were recorded during Psa growth after treatment with the aseptic filtrate, showing that Psa proliferation was inhibited and the integrity of the cell membrane was destroyed; this was further verified using scanning electron microscopy and transmission electron microscopy. In vivo, WL-23 promoted plant growth, increased plant antioxidant enzyme activity, and reduced canker incidence. Therefore, WL-23 is expected to become a biological control agent due to its great potential to contribute to sustainable agriculture.


Assuntos
Actinidia , Bacillus , Pseudomonas syringae , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Actinidia/microbiologia
10.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4738-4746, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37802813

RESUMO

This study aimed to explore the mechanism of albiflorin in the treatment of Alzheimer's disease(AD) based on network pharmacology, molecular docking, and in vitro experiments. Network pharmacology was used to predict the potential targets and pathways of albiflorin against AD, and molecular docking technology was used to verify the binding affinity of albiflorin to key target proteins. Finally, the AD cell model was induced by Aß_(25-35) in rat pheochromocytoma(PC12) cells and intervened by albiflorin to validate core targets and pathways. The results of network pharmacological analysis showed that albiflorin acted on key targets such as mitogen-activated protein kinase-1(MAPK1 or ERK2), albumin(ALB), epidermal growth factor receptor(EGFR), caspase-3(CASP3), and sodium-dependent serotonin transporter(SLC6A4), and signaling pathways such as MAPK, cAMP, and cGMP-PKG. The results of molecular docking showed that albiflorin had strong binding affinity to MAPK1(ERK2). In vitro experiments showed that compared with the blank group, the model group showed decreased cell viability, decreased expression level of B-cell lymphoma 2(Bcl-2), increased Bcl-2-associated X protein(Bax), and reduced phosphorylation level of extracellular signal-regulated kinase 1/2(ERK1/2) and the relative expression ratio of p-ERK1/2 to ERK1/2. Compared with the model group, the albiflorin group showed potentiated cell viability, up-regulated expression of Bcl-2, down-regulated Bax, and increased phosphorylation level of ERK1/2 and the relative expression ratio of p-ERK1/2 to ERK1/2. These results suggest that the mechanism of albiflorin against AD may be related to its activation of the MAPK/ERK signaling pathway and its inhibition of neuronal apoptosis.


Assuntos
Doença de Alzheimer , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Proteína X Associada a bcl-2 , Farmacologia em Rede , Simulação de Acoplamento Molecular
11.
Cell Commun Signal ; 20(1): 115, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902952

RESUMO

BACKGROUND: Diabetic nephropathy (DN) involves various structural and functional changes because of chronic glycemic assault and kidney failure. Proteinuria is an early clinical manifestation of DN, but the associated pathogenesis remains elusive. This study aimed to investigate the role of microtubule associated protein 4 (MAP4) phosphorylation (p-MAP4) in proteinuria in DN and its possible mechanisms. METHODS: In this study, the urine samples of diabetic patients and kidney tissues of streptozotocin (STZ)-induced diabetic mice were obtained to detect changes of p-MAP4. A murine model of hyperphosphorylated MAP4 was established to examine the effect of MAP4 phosphorylation in DN. Podocyte was applied to explore changes of kidney phenotypes and potential mechanisms with multiple methods. RESULTS: Our results demonstrated elevated content of p-MAP4 in diabetic patients' urine samples, and increased kidney p-MAP4 in streptozocin (STZ)-induced diabetic mice. Moreover, p-MAP4 triggered proteinuria with aging in mice, and induced epithelial-to-mesenchymal transition (EMT) and apoptosis in podocytes. Additionally, p-MAP4 mice were much more susceptible to STZ treatment and showed robust DN pathology as compared to wild-type mice. In vitro study revealed high glucose (HG) triggered elevation of p-MAP4, rearrangement of microtubules and F-actin filaments with enhanced cell permeability, accompanied with dedifferentiation and apoptosis of podocytes. These effects were significantly reinforced by MAP4 hyperphosphorylation, and were rectified by MAP4 dephosphorylation. Notably, pretreatment of p38/MAPK inhibitor SB203580 reinstated all HG-induced pathological alterations. CONCLUSIONS: The findings indicated a novel role for p-MAP4 in causing proteinuria in DN. Our results indicated the therapeutic potential of MAP4 in protecting against proteinuria and related diseases. Video Abstract.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Animais , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Transição Epitelial-Mesenquimal , Camundongos , Proteínas Associadas aos Microtúbulos , Fosforilação , Podócitos/patologia , Proteinúria/complicações , Estreptozocina/farmacologia
12.
Lasers Surg Med ; 54(10): 1309-1320, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403288

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a promising new approach to promote wound healing and its effectiveness has been demonstrated in both clinical and animal studies. Macrophages are the key cells in wound healing and inflammatory response. However, the mechanism of action of PDT on macrophages in promoting wound healing is still unclear. METHODS: In this study, RAW264.7 cells were used. We analyzed the expression levels of macrophage markers arginase 1 (Arg-1), CD206, iNOS, CD86, and inflammatory factors IL-6, TNF-α, and IL-1ß by reverse transcription-polymerase chain reaction and Western blot, Milliplex microtubule-associated protein multiplex assay was performed to analyze the expression of inflammatory factors in the supernatant. Live cell Imaging System to observe the dynamic process of macrophage phagocytosis. Western blot was performed to observe the activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and NOD-like receptor protein 3 (NLRP3) inflammasome. RESULTS: 5-Aminolevulinic acid (ALA)-PDT increased the expression of M1 marker iNOS/CD86 and decreased the expression of Arg-1/CD206 in RAW264.7 cells, while, proinflammatory factors IL-6, TNF-α, and IL-1ß expression was enhanced and macrophage phagocytosis was increased. We also found that these phenomena were associated with activation of the ERK/MAPK-NLRP3 pathway. CONCLUSION: ALA-PDT promotes early inflammatory responses by regulating macrophage M1 polarization through the ERK/MAPK-NLRP3 pathway. It also promotes macrophage phagocytosis.


Assuntos
Ácido Aminolevulínico , Fotoquimioterapia , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
13.
Sensors (Basel) ; 22(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408290

RESUMO

Recently, a frequency diverse array (FDA) has been employed in an orthogonal frequency division multiplexing (OFDM) transmitter to achieve secure wireless communication without mathematical encryption. However, an insecure coupling effect arises if the frequency increments are linearly assigned to all antenna elements. To solve this problem, random subcarrier-selection methods are proposed; however, the challenge lies in the random selection of subcarriers. Inspired by the randomness of index modulation (IM), this paper proposes a low complexity random subcarrier-selection method based on index modulation (RSCS-IM). Specifically, this work conducted analysis on the spectral efficiency (SE) of our system and the computational complexity of RSCS-IM, which works out a closed-form expression of the BER performance of a desired position and validates the theoretical outcomes through simulation.


Assuntos
Telecomunicações , Simulação por Computador , Desenho de Equipamento , Processamento de Sinais Assistido por Computador
14.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270908

RESUMO

Channel-based physical-layer authentication, which is capable of detecting spoofing attacks in dual-hop wireless networks with low cost and low complexity, attracted a great deal of attention from researchers. In this paper, we explore the likelihood ratio test (LRT) with cascade channel frequency response, which is optimal according to the Neyman-Pearson theorem. Since it is difficult to derive the theoretical threshold and the probability of detection for LRT, majority voting (MV) algorithm is employed as a trade-off between performance and practicality. We make decisions according to the temporal variations of channel frequency response in independent subcarriers separately, the results of which are used to achieve a hypothesis testing. Then, we analyze the theoretical false alarm rate (FAR) and miss detection rate (MDR) by quantifying the upper bound of their sum. Moreover, we develop the optimal power allocation strategy between the transmitter and the relay by minimizing the derived upper bound with the optimal decision threshold according to the relay-to-receiver channel gain. The proposed power allocation strategy takes advantage of the difference of noise power between the relay and the receiver to jointly adjust the transmit power, so as to improve the authentication performance on condition of fixed total power. Simulation results demonstrate that the proposed power allocation strategy outperforms the equal power allocation in terms of FAR and MDR.


Assuntos
Algoritmos , Simulação por Computador
15.
Am J Physiol Endocrinol Metab ; 320(6): E1044-E1052, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900848

RESUMO

Obesity and type 2 diabetes are rapidly increasing in the adolescent population. We sought to determine whether adipokines, specifically leptin, C1q/TNF-related proteins 1 (CTRP1) and CTRP9, and the hepatokine fibroblast growth factor 21 (FGF21), are associated with obesity and hyperglycemia in a cohort of lean and obese adolescents, across the spectrum of glycemia. In an observational, longitudinal study of lean and obese adolescents, we measured fasting laboratory tests, oral glucose tolerance tests, and adipokines including leptin, CTRP1, CTRP9, and FGF21. Participants completed baseline and 2-year follow-up study visits and were categorized as lean (LC, lean control; n = 30), obese normoglycemic (ONG; n = 61), and obese hyperglycemic (OHG; n = 31) adolescents at baseline and lean (n = 8), ONG (n = 18), and OHG (n = 4) at follow-up. Groups were compared using ANOVA and regression analysis, and linear mixed effects modeling was used to test for differences in adipokine levels across baseline and follow-up visits. Results showed that at baseline, leptin was higher in all obese groups (P < 0.001) compared with LC. FGF21 was higher in OHG participants compared with LC (P < 0.001) and ONG (P < 0.001) and positively associated with fasting glucose (P < 0.001), fasting insulin (P < 0.001), Homeostasis Model Assessment-Insulin Resistance Index (HOMA-IR; P < 0.001), and hemoglobin A1c (HbA1c; P = 0.01). CTRP1 was higher in OHG compared with ONG (P = 0.03). CTRP9 was not associated with obesity or hyperglycemia in this pediatric cohort. At 2 years, leptin decreased in ONG (P = 0.003) and FGF21 increased in OHG (P = 0.02), relative to lean controls. Altered adipokine levels are associated with the inflammatory milieu in obese youth with and without hyperglycemia. In adolescence, the novel adipokine CTRP1 was elevated with hyperglycemia, whereas CTRP9 was unchanged in this cohort.NEW & NOTEWORTHY Leptin is higher in obese adolescents and FGF21 is higher in obese hyperglycemic adolescents. The novel adipokine CTRP1 is higher in obese hyperglycemic adolescents, whereas CTRP9 was unchanged in this adolescent cohort.


Assuntos
Adipocinas/sangue , Glicemia/metabolismo , Obesidade Infantil/sangue , Adipocinas/análise , Adolescente , Glicemia/fisiologia , Criança , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Seguimentos , Intolerância à Glucose/sangue , Intolerância à Glucose/complicações , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Humanos , Resistência à Insulina/fisiologia , Estudos Longitudinais , Masculino , Obesidade Infantil/complicações , Estado Pré-Diabético/sangue , Estado Pré-Diabético/complicações
16.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5922-5929, 2021 Nov.
Artigo em Zh | MEDLINE | ID: mdl-34951183

RESUMO

This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERß expression was detected by immunohistochemistry, and the expression levels of ERß and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERß, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERß and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.


Assuntos
Polypodiaceae , Animais , Flavonoides , Hipocampo , Aprendizagem em Labirinto , Camundongos , Receptores de Estrogênio , Escopolamina/toxicidade , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética
17.
J Biol Chem ; 294(43): 15638-15649, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31439668

RESUMO

The highly conserved C1q/TNF-related protein (CTRP) family of secreted hormones has emerged as important regulators of insulin action and of sugar and fat metabolisms. Among these, the specific biological function of CTRP2 remains elusive. Here, we show that the expression of human CTRP2 is positively correlated with body mass index (BMI) and is up-regulated in obesity. We used a knockout (KO) mouse model to determine CTRP2 function and found that Ctrp2-KO mice have significantly elevated metabolic rates and energy expenditure leading to lower body weights and lower adiposity. CTRP2 deficiency up-regulated the expression of lipolytic enzymes and protein kinase A signaling, resulting in enhanced adipose tissue lipolysis. In cultured adipocytes, CTRP2 treatment suppressed triglyceride (TG) hydrolysis, and its deficiency enhanced agonist-induced lipolysis in vivo CTRP2-deficient mice also had altered hepatic and plasma lipid profiles. Liver size and hepatic TG content were significantly reduced, but plasma TG was elevated in KO mice. Both plasma and hepatic cholesterol levels, however, were reduced in KO mice. Loss of CTRP2 also enhanced hepatic TG secretion and contributed to impaired plasma lipid clearance following an oral lipid gavage. Liver metabolomic analysis revealed significant changes in diacylglycerols and phospholipids, suggesting that increased membrane remodeling may underlie the altered hepatic TG secretion we observed. Our results provide the first in vivo evidence that CTRP2 regulates lipid metabolism in adipose tissue and liver.


Assuntos
Tecido Adiposo/metabolismo , Proteínas do Sistema Complemento/metabolismo , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipólise , Fígado/metabolismo , Triglicerídeos/metabolismo , Células 3T3-L1 , Adiposidade , Animais , Peso Corporal , Colesterol/sangue , Dieta Hiperlipídica , Metabolismo Energético , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Obesidade/metabolismo , Triglicerídeos/sangue , Regulação para Cima/genética
18.
Am J Physiol Endocrinol Metab ; 319(1): E146-E162, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421370

RESUMO

Secreted hormones facilitate tissue cross talk to maintain energy balance. We previously described C1q/TNF-related protein 12 (CTRP12) as a novel metabolic hormone. Gain-of-function and partial-deficiency mouse models have highlighted important roles for this fat-derived adipokine in modulating systemic metabolism. Whether CTRP12 is essential and required for metabolic homeostasis is unknown. We show here that homozygous deletion of Ctrp12 gene results in sexually dimorphic phenotypes. Under basal conditions, complete loss of CTRP12 had little impact on male mice, whereas it decreased body weight (driven by reduced lean mass and liver weight) and improved insulin sensitivity in female mice. When challenged with a high-fat diet, Ctrp12 knockout (KO) male mice had decreased energy expenditure, increased weight gain and adiposity, elevated serum TNFα level, and reduced insulin sensitivity. In contrast, female KO mice had reduced weight gain and liver weight. The expression of lipid synthesis and catabolism genes, as well as profibrotic, endoplasmic reticulum stress, and oxidative stress genes were largely unaffected in the adipose tissue of Ctrp12 KO male mice. Despite greater adiposity and insulin resistance, Ctrp12 KO male mice fed an obesogenic diet had lower circulating triglyceride and free fatty acid levels. In contrast, lipid profiles of the leaner female KO mice were not different from those of WT controls. These data suggest that CTRP12 contributes to whole body energy metabolism in genotype-, diet-, and sex-dependent manners, underscoring complex gene-environment interactions influencing metabolic outcomes.


Assuntos
Adipocinas/genética , Peso Corporal/genética , Dieta Hiperlipídica , Metabolismo Energético/genética , Resistência à Insulina/genética , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Estresse do Retículo Endoplasmático/genética , Ácidos Graxos não Esterificados/metabolismo , Feminino , Fibrose/genética , Expressão Gênica , Interação Gene-Ambiente , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Estresse Oxidativo/genética , Fatores Sexuais , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aumento de Peso/genética
19.
FASEB J ; 33(12): 14748-14759, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31689374

RESUMO

Interorgan communication mediated by secreted proteins plays a pivotal role in metabolic homeostasis, yet the function of many circulating secretory proteins remains unknown. Here, we describe the function of protease-associated domain-containing 1 (PRADC1), an enigmatic secretory protein widely expressed in humans and mice. In metabolically active tissues (liver, muscle, fat, heart, and kidney), we showed that Pradc1 expression is significantly suppressed by refeeding and reduced in kidney and brown fat in the context of obesity. PRADC1 is dispensable for whole-body metabolism when mice are fed a low-fat diet. However, in obesity induced by high-fat feeding, PRADC1-deficient female mice have reduced weight gain and adiposity despite similar caloric intake. Decreased fat mass is attributed, in part, to increased metabolic rate, physical activity, and energy expenditure in these animals. Reduced adiposity in PRADC1-deficient mice, however, does not improve systemic glucose and lipid metabolism, insulin sensitivity, liver steatosis, or adipose inflammation. Thus, in PRADC1-deficient animals, decreased fat mass and enhanced physical activity are insufficient to confer a healthy metabolic phenotype in the context of an obesogenic diet. Our results shed light on the physiologic function of PRADC1 and the complex regulation of metabolic health.-Rodriguez, S., Stewart, A. N., Lei, X., Cao, X., Little, H. C., Fong, V., Sarver, D. C., Wong, G. W. PRADC1: a novel metabolic-responsive secretory protein that modulates physical activity and adiposity.


Assuntos
Adiposidade , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Metabolismo dos Lipídeos , Movimento , Tecido Adiposo/metabolismo , Animais , Feminino , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo
20.
FASEB J ; 33(7): 8666-8687, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31002535

RESUMO

We recently described myonectin (also known as erythroferrone) as a novel skeletal muscle-derived myokine with metabolic functions. Here, we use a genetic mouse model to determine myonectin's requirement for metabolic homeostasis. Female myonectin-deficient mice had larger gonadal fat pads and developed mild insulin resistance when fed a high-fat diet (HFD) and had reduced food intake during refeeding after an unfed period but were otherwise indistinguishable from wild-type littermates. Male mice lacking myonectin, however, had reduced physical activity when fed ad libitum and in the postprandial state but not during the unfed period. When stressed with an HFD, myonectin-knockout male mice had significantly elevated VLDL-triglyceride (TG) and strikingly impaired lipid clearance from circulation following an oral lipid load. Fat distribution between adipose and liver was also altered in myonectin-deficient male mice fed an HFD. Greater fat storage resulted in significantly enlarged adipocytes and was associated with increased postprandial lipoprotein lipase activity in adipose tissue. Parallel to this was a striking reduction in liver steatosis due to significantly reduced TG accumulation. Liver metabolite profiling revealed additional significant changes in bile acids and 1-carbon metabolism pathways. Combined, our data affirm the physiologic importance of myonectin in regulating local and systemic lipid metabolism.-Little, H. C., Rodriguez, S., Lei, X., Tan, S. Y., Stewart, A. N., Sahagun, A., Sarver, D. C., Wong, G. W. Myonectin deletion promotes adipose fat storage and reduces liver steatosis.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Citocinas/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Proteínas Musculares/genética , Adipócitos/metabolismo , Adipócitos/patologia , Adiposidade/genética , Animais , Citocinas/metabolismo , Dieta Hiperlipídica , Fígado Gorduroso/patologia , Feminino , Homeostase/genética , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Triglicerídeos/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA