Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 353: 120136, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38271884

RESUMO

Heavy metal pollution has attracted significant attention due to its persistent presence in aquatic environments. A novel vaterite-based calcium carbonate adsorbent, named biogenic CaCO3, was synthesized utilizing a microbially induced carbonate precipitation (MICP) method to remediate heavy metal-contaminated water. The maximum Cd2+ removal capacity of biogenic CaCO3 was 1074.04 mg Cd2+/g CaCO3 with a high Cd2+ removal efficiency greater than 90% (initial Cd2+ concentration 400 mg/L). Furthermore, the biogenic CaCO3 vaterite, induced by microbial-induced calcium carbonate precipitation (MICP) process, demonstrated a prolonged phase transformation to calcite and enhanced stability. This resulted in a sustained high effectiveness (greater than 96%) following six consecutive recycling tests. Additionally, X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that the semi-stable vaterite type of biogenic CaCO3 spontaneously underwent dissolution and recrystallization to form thermodynamic stable calcite in aquatic environments. However, the presence of Cd2+ leads to the transformation of vaterite into CdCO3 rather than undergoing direct converting to calcite. This transformation is attributed to the relatively low solubility of CdCO3 compared to calcite. Meanwhile, the biogenic CaCO3 proved to be an efficient and viable method for the removal of Pb2+, Cu2+, Zn2+, Co2+, Ni2+ and Mn2+ from water samples, surpassing the performance of previously reported adsorbents. Overall, the efficient and promising adsorbent demonstrates potential for practical in situ remediation of heavy metals-contaminated water.


Assuntos
Carbonato de Cálcio , Metais Pesados , Carbonato de Cálcio/química , Cádmio/química , Água , Biomineralização , Carbonatos/química
2.
Plant Physiol Biochem ; 206: 108220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039583

RESUMO

Phosphorus (P) is critical to plants in metal-contaminated soils because it participates in various biochemical reactions during plant growth. However, the mechanisms of P in mitigating the toxicity of heavy metals to ryegrass root is still veiled. In this study, the physiological and biochemical dynamics of the ryegrass root under various cadmium (Cd) and P conditions were investigated in a hydroponic system. Cd stress decreased the length of the ryegrass root, but P application enhanced the root elongation to reduce the Cd concentration in the root. Both Cd and P dosages were positively correlated with hemicellulose 1 content, pectin content, and PME activity, while having a negative effect on cellulose content. Moreover, the addition of 80 mg L-1 P increased the contents of pectin and hemicellulose 1 by 2.5 and 5.8% even with 4 mg L-1 Cd. In addition, P supply increased pectin methylesterbase activity under Cd stress, which further changed the extra-cytoplasmic structures and cell wall composition. Thus, exogenous P promoted the immobilization of Cd onto the cell wall and protected protoplast primarily through indirectly regulating the binding capacity of the root cell wall for Cd.


Assuntos
Lolium , Poluentes do Solo , Cádmio/metabolismo , Lolium/metabolismo , Raízes de Plantas/metabolismo , Pectinas/metabolismo , Parede Celular/metabolismo , Poluentes do Solo/metabolismo
3.
Plants (Basel) ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498409

RESUMO

Drought-induced metabolic dysregulation significantly enhances the production of reactive oxygen species (ROS), which, in turn, exerts a substantial influence on the oxidation-reduction regulatory status of cells. These ROS, under conditions of drought stress, become highly reactive entities capable of targeting various plant organelles, metabolites, and molecules. Consequently, disruption affects a wide array of metabolic pathways and eventually leads to the demise of the cells. Given this understanding, this study aimed to investigate the effects of different drought stress levels on the growth and development of the invasive weed Wedelia trilobata and its co-responding native counterpart Wedelia chinensis. Both plants evolved their defense mechanisms to increase their antioxidants and hormone contents to detoxify ROS to avoid oxidative damage. Still, the chlorophyll content fluctuated and increased in a polyethylene-glycol-simulated drought. The proline content also rose in the plants, but W. chinensis showed a significant negative correlation between proline and malondialdehyde in different plant parts. Thus, W. trilobata and W. chinensis exhibited diverse or unlike endogenous hormone regulation patterns under drought conditions. Meanwhile, W. trilobata and W. chinensis pointedly increased the content of indole acetic acid and gibberellic acid in a different drought stress environment. A positive correlation was found between endogenous hormones in other plant parts, including in the roots and leaves. Both simulated and natural drought conditions exerted a significant influence on both plant species, with W. trilobata displaying superior adaptation characterized by enhanced growth, bolstered antioxidant defense mechanisms, and heightened hormonal activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA