Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618752

RESUMO

Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.


Assuntos
Arabidopsis , Dendrobium , Compostos Heterocíclicos com 3 Anéis , Lactonas , Dendrobium/genética , Agricultura , Plântula , Transdução de Sinais
2.
J Orthop Surg Res ; 19(1): 175, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459593

RESUMO

BACKGROUND: Bone implant infections pose a critical challenge in orthopedic surgery, often leading to implant failure. The potential of implant coatings to deter infections by hindering biofilm formation is promising. However, a shortage of cost-effective, efficient, and clinically suitable coatings persists. Polyvinyl alcohol (PVA), a prevalent biomaterial, possesses inherent hydrophilicity, offering potential antibacterial properties. METHODS: This study investigates the PVA solution's capacity to shield implants from bacterial adhesion, suppress bacterial proliferation, and thwart biofilm development. PVA solutions at concentrations of 5%, 10%, 15%, and 20% were prepared. In vitro assessments evaluated PVA's ability to impede bacterial growth and biofilm formation. The interaction between PVA and mCherry-labeled Escherichia coli (E. coli) was scrutinized, along with PVA's therapeutic effects in a rat osteomyelitis model. RESULTS: The PVA solution effectively restrained bacterial proliferation and biofilm formation on titanium implants. PVA solution had no substantial impact on the activity or osteogenic potential of MC3T3-E1 cells. Post-operatively, the PVA solution markedly reduced the number of Staphylococcus aureus and E. coli colonies surrounding the implant. Imaging and histological scores exhibited significant improvements 2 weeks post-operation. Additionally, no abnormalities were detected in the internal organs of PVA-treated rats. CONCLUSIONS: PVA solution emerges as an economical, uncomplicated, and effective coating material for inhibiting bacterial replication and biofilm formation on implant surfaces, even in high-contamination surgical environments.


Assuntos
Escherichia coli , Álcool de Polivinil , Ratos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Próteses e Implantes , Biofilmes , Titânio , Materiais Revestidos Biocompatíveis , Propriedades de Superfície
3.
PLoS One ; 19(5): e0298299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722945

RESUMO

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Assuntos
Agrobacterium tumefaciens , Helianthus , Plantas Geneticamente Modificadas , Transformação Genética , Helianthus/genética , Helianthus/microbiologia , Helianthus/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Cultura de Tecidos/métodos , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
4.
Int J Biol Macromol ; 233: 123369, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693612

RESUMO

Abiotic stress has great impacts on plant germination, growth and development and crop yield. Therefore, it is important to understand the molecular mechanism of plants response to abiotic stress. In this study, we identified a plant specific protein AtSIEK (stress-induced protein with EXD1-like domain and KH domain) response to salt stress. AtSIEK encodes a hnRNP K homology (KH) protein localized in nucleus. Amino acid sequences analysis found that SIEK protein is specific in plants, containing two domains with EXD1-like domain and KH domain, while SIEK homolog in animals only had EXD1-like domain without KH domain. Physiology experiments revealed that AtSIEK was significantly induced under salt stress and the siek mutant shows sensitive to salt stress, indicating that AtSIEK was a positive regulator in stress response. Further, molecular, biochemical, and genetic assays suggested that AtSIEK interacts with FRY2/CPL1, a known regulator in response to abiotic stress, and they function synergistically in response to salt stress. Taken together, these results shed new light on the regulation of plant adaption to abiotic stress, which deepen our understanding of the molecular mechanisms of abiotic stress regulation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
Drug Des Devel Ther ; 14: 1633-1639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425508

RESUMO

PURPOSE: The aim of the experiment was to explore the effect of eriodictyol (ERI) on arthritis. METHODS: We established a rat model of collagen-induced rheumatoid arthritis (CIA) using type II collagen plus Freund's complete adjuvant. We evaluated the degree of paw swelling, joint pathology, inflammatory cytokine levels, and the Akt/hypoxia-inducible factor (HIF)-1α signaling pathway in the CIA rats. RESULTS: ERI significantly ameliorated joint swelling; improved joint pathology; and suppressed the release of interleukin-6, interleukin-1 beta, and tumor necrosis factor-alpha. Moreover, ERI inhibited the Akt/HIF-1α pathway in the joints of rats and in lipopolysaccharide-treated RAW264.7 cells. CONCLUSION: ERI ameliorated arthritis in a manner involving the Akt/HIF-1α signaling pathway.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Flavanonas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Colágeno/administração & dosagem , Citocinas/análise , Relação Dose-Resposta a Droga , Flavanonas/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Subcutâneas , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Sci Rep ; 10(1): 10626, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606296

RESUMO

Salinity is a major abiotic stress that affects plant growth and development and leads to crop yield loss. Many crop species are more sensitive to salinity stress at the seed germination stage than at other developmental stages. Some studies have shown that sunflower is tolerant to salinity to a certain degree. However, no systematic screening data for sunflower germplasms are available for salinity stress. In this study, 552 sunflower germplasms with different genetic backgrounds were evaluated for salt tolerance. Among them, 30 and 53 sunflower germplasms were identified as highly salt-tolerant and salt-tolerant germplasms, respectively, while 80 and 23 were grouped as salt-sensitive and highly salt-sensitive materials, respectively. Of all the traits tested, the germination index and the germination vigor index were the two most reliable traits, showing the highest correlation with salt tolerance during the seed germination stage of sunflower. Thus, a highly efficient and reliable method for evaluating salinity tolerance of sunflower seed germination was established. These results provided a good foundation for studying salt-tolerance mechanisms and breeding highly salt-tolerant sunflower cultivars.


Assuntos
Germinação , Helianthus/fisiologia , Tolerância ao Sal , Genótipo , Helianthus/genética , Melhoramento Vegetal/métodos , Sementes/genética , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA