Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioinformatics ; 37(22): 4263-4265, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35032393

RESUMO

MOTIVATION: Ligand-receptor (LR) network analysis allows the characterization of cellular crosstalk based on single cell RNA-seq data. However, current methods typically provide a list of inferred LR interactions and do not allow the researcher to focus on specific cell types, ligands or receptors. In addition, most of these methods cannot quantify changes in crosstalk between two biological phenotypes. RESULTS: CrossTalkeR is a framework for network analysis and visualization of LR interactions. CrossTalkeR identifies relevant ligands, receptors and cell types contributing to changes in cell communication when contrasting two biological phenotypes, i.e. disease versus homeostasis. A case study on scRNA-seq of human myeloproliferative neoplasms reinforces the strengths of CrossTalkeR for characterization of changes in cellular crosstalk in disease. AVAILABILITY AND IMPLEMENTATION: CrosstalkeR is an R package available at: Github: https://github.com/CostaLab/CrossTalkeR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Perfilação da Expressão Gênica , Humanos , Ligantes , Análise de Sequência de RNA
2.
Blood ; 136(18): 2051-2064, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32726410

RESUMO

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that leads to progressive bone marrow (BM) fibrosis. Although the cellular mutations involved in the pathogenesis of PMF have been extensively investigated, the sequential events that drive stromal activation and fibrosis by hematopoietic-stromal cross-talk remain elusive. Using an unbiased approach and validation in patients with MPN, we determined that the differential spatial expression of the chemokine CXCL4/platelet factor-4 marks the progression of fibrosis. We show that the absence of hematopoietic CXCL4 ameliorates the MPN phenotype, reduces stromal cell activation and BM fibrosis, and decreases the activation of profibrotic pathways in megakaryocytes, inflammation in fibrosis-driving cells, and JAK/STAT activation in both megakaryocytes and stromal cells in 3 murine PMF models. Our data indicate that higher CXCL4 expression in MPN has profibrotic effects and is a mediator of the characteristic inflammation. Therefore, targeting CXCL4 might be a promising strategy to reduce inflammation in PMF.


Assuntos
Medula Óssea/patologia , Fibrose/patologia , Inflamação/patologia , Transtornos Mieloproliferativos/complicações , Fator Plaquetário 4/metabolismo , Mielofibrose Primária/patologia , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Proliferação de Células , Progressão da Doença , Fibrose/etiologia , Fibrose/imunologia , Fibrose/metabolismo , Humanos , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Megacariócitos , Camundongos , Camundongos Knockout , Mutação , Fator Plaquetário 4/genética , Mielofibrose Primária/etiologia , Mielofibrose Primária/imunologia , Mielofibrose Primária/metabolismo
3.
Exp Hematol ; 110: 28-33, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341805

RESUMO

Within the heterogenous pool of bone marrow stromal cells, mesenchymal stromal cells (MSCs) are of particular interest because of their hematopoiesis-supporting capacities, contribution to disease progression, therapy resistance, and leukemic initiation. Cultured bone marrow-derived stromal cells (cBMSCs) are used for in vitro modeling of hematopoiesis-stroma interactions, validation of disease mechanisms, and screening for therapeutic targets. Here, we place cBMSCs (mouse and human) in a bone marrow tissue context by systematically comparing the transcriptome of plastic-adherent cells on a single-cell level with in vivo counterparts. Cultured BMSCs encompass a rather homogenous cell population, independent of the isolation method used and, although still possessing hematopoiesis-supporting capacity, are distinct from freshly isolated MSCs and more akin to in vivo fibroblast populations. Informed by combined cell trajectories and pathway analyses, we illustrate that TGFb inhibition in vitro can preserve a more "MSC"-like phenotype.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Fibroblastos , Hematopoese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Célula Única
4.
Blood Adv ; 6(1): 28-36, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619756

RESUMO

Cytomegalovirus (CMV) reactivation is a frequent complication after allogeneic hematopoietic cell transplantation (HCT), whose impact on clinical outcome, in particular on leukemic relapse, is controversial. We retrospectively analyzed 687 HCT recipients with acute myeloid leukemia (AML) and ciclosporin-based immunosuppression to better understand the differential impact of CMV on transplant outcomes depending on AML disease stage and in vivo T cell depletion with antithymocyte globulin (ATG). Without ATG, CMV reactivation associated with significantly reduced relapse, yet its effect was more pronounced for advanced disease AML (P = .0002) than for patients in first complete remission (CR1, P = .0169). Depending on the disease stage, ATG exposure abrogated relapse protection following CMV reactivation in advanced stages (P = .796), while it inverted its effect into increased relapse for CR1 patients (P = .0428). CMV reactivation was associated with significantly increased nonrelapse mortality in CR1 patients without ATG (P = .0187) but not in those with advanced disease and ATG. Following CMV reactivation, only patients with advanced disease had significantly higher event-free survival rates as compared with patients without CMV. Overall, our data suggest that both ATG and disease stage modulate the impact of post-HCT CMV reactivation in opposite directions, revealing a level of complexity that warrants future studies regarding the interplay between antivirus and antitumor immunity.


Assuntos
Infecções por Citomegalovirus , Leucemia Mieloide Aguda , Soro Antilinfocitário/uso terapêutico , Infecções por Citomegalovirus/complicações , Humanos , Recidiva , Estudos Retrospectivos , Ativação Viral
5.
Blood Adv ; 6(6): 1780-1796, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016204

RESUMO

How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1-/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1-/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.


Assuntos
Deleção Cromossômica , Síndromes Mielodisplásicas , Haploinsuficiência , Células-Tronco Hematopoéticas/patologia , Humanos , Síndromes Mielodisplásicas/patologia
6.
Exp Hematol ; 104: 48-54, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601067

RESUMO

Single-cell technologies have rapidly developed in recent years and have already had a significant impact on the research of myeloproliferative neoplasms. The increasing number of publicly available data sets allows characterization of the bone marrow niche in patients and mouse models at unprecedented resolution. Single-cell RNA sequencing has successfully been used to identify and characterize disease-driving cell populations and to identify the alarmin S100A8/A9 as an important mediator of myelofibrosis and potent therapeutic target. It is now possible to execute a streamlined set of experiments to specifically identify and validate actionable target genes functionally with the advance of reliable in vivo models and the possibility of conducting single-cell analyses with a minimal amount of patient material. The advent of large-scale analyses of both hematopoietic and non-hematopoietic bone marrow cells will allow comprehensive network analyses guiding an increasingly detailed mapping of the MPN interactome.


Assuntos
Medula Óssea/patologia , Mielofibrose Primária/patologia , Análise de Célula Única/métodos , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Humanos , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Pesquisa Translacional Biomédica/métodos
7.
STAR Protoc ; 2(2): 100538, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027494

RESUMO

Bone marrow (BM) mesenchymal stromal cells play an important role in regulating stem cell quiescence and homeostasis; they are also key contributors to various hematological malignancies. However, human bone marrow stromal cells are difficult to isolate and prone to damage during isolation. This protocol describes a combination of mechanical and enzymatic isolation of BM stromal cells from human BM biopsies, followed by FACS sorting to separate stromal sub-populations including mesenchymal stromal cells, fibroblasts, and Schwann cells for single-cell RNA sequencing. For complete details on the use and execution of this protocol, please refer to Leimkühler et al. (2020).


Assuntos
Medula Óssea/patologia , Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biópsia , Humanos
8.
Cell Stem Cell ; 28(4): 637-652.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301706

RESUMO

Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.


Assuntos
Células-Tronco Mesenquimais , Transtornos Mieloproliferativos , Mielofibrose Primária , Alarminas , Animais , Medula Óssea , Humanos , Camundongos
9.
Hematology Am Soc Hematol Educ Program ; 2019(1): 294-302, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31808897

RESUMO

Self-renewing hematopoietic stem cells and their progeny, lineage-specific downstream progenitors, maintain steady-state hematopoiesis in the bone marrow (BM). Accumulating evidence over the last few years indicates that not only primitive hematopoietic stem and progenitor cells (HSPCs), but also cells defining the microenvironment of the BM (BM niche), sense hematopoietic stress signals. They respond by directing and orchestrating hematopoiesis via not only cell-intrinsic but also cell-extrinsic mechanisms. Inflammation has many beneficial roles by activating the immune system in tissue repair and as a defense mechanism. However, chronic inflammation can have detrimental effects by stressing HSPCs, leading to cell (DNA) damage resulting in BM failure or even to leukemia. Emerging data have demonstrated that the BM microenvironment plays a significant role in the pathogenesis of hematopoietic malignancies, in particular, through disrupted inflammatory signaling, specifically in niche (microenvironmental) cells. Clonal selection in the context of microenvironmental alterations can occur in the context of toxic insults (eg, chemotherapy), not only aging but also inflammation. In this review, we summarize mechanisms that lead to an inflammatory BM microenvironment and discuss how this affects normal hematopoiesis. We pay particular attention to the process of aging, which is known to involve low-grade inflammation and is also associated with age-related clonal hematopoiesis and potentially malignant transformation.


Assuntos
Medula Óssea/patologia , Microambiente Celular , Inflamação/patologia , Envelhecimento/patologia , Animais , Hematopoese , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA