RESUMO
[Figure: see text].
Assuntos
Quimiocina CXCL12/metabolismo , Isquemia/terapia , Macrófagos/fisiologia , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo II/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Animais , Movimento Celular , Proliferação de Células , Quimiocina CCL2/metabolismo , Humanos , Isquemia/fisiopatologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/deficiência , Óxido Nítrico Sintase Tipo III/metabolismo , Plasmídeos/metabolismo , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismoRESUMO
The main objective of this study was to clarify the topical mechanisms underlying diclofenac-induced gastric toxicity by considering for the first time both ionization states of this nonsteroidal anti-inflammatory drug. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes were the model system chosen to mimic the protective phospholipid layers of the gastric mucosa and to describe the interactions with diclofenac, considering the pH gradient found in the gastric mucosa (3 < pH < 7.4). Complementary experimental techniques were combined to evaluate the drug's affinity for DMPC bilayers, as well as to assess the drug's effects on the structural properties of the phospholipid bilayer. The diclofenac-DMPC interactions were clearly dependent on the drug's ionization state. Neutral diclofenac displayed greater affinity for DMPC bilayers than anionic diclofenac. Moreover, the protonated/neutral form of the drug induced more pronounced and/or distinct alterations in the structure of the DMPC bilayer than the deprotonated/ionized form, considering similar membrane concentrations. Therefore, neutral diclofenac-induced changes in the structural properties of the external phospholipid layers of the gastric mucosa may constitute an additional toxicity mechanism of this worldwide-used drug, which shall be considered for the development of safer therapeutic strategies. SIGNIFICANCE STATEMENT: Neutral or anionic diclofenac exerted distinct alterations in phosphatidylcholine bilayers, which are used in this work as models for the protective phospholipid layers of the gastric mucosa. Remarkable changes were induced by neutral diclofenac in the structural properties of the phospholipid bilayer, suggesting that both ionized and neutral states of nonsteroidal anti-inflammatory drugs must be considered to clarify their mechanisms of toxicity and to ultimately develop safer anti-inflammatory drugs.
Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Diclofenaco/toxicidade , Dimiristoilfosfatidilcolina/química , Mucosa Gástrica/efeitos dos fármacos , Bicamadas Lipídicas/química , Mucosa Gástrica/química , Concentração de Íons de Hidrogênio , Lipossomos/química , Estrutura Molecular , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
(1) Background: Membrane lipids have been disregarded in drug development throughout the years. Recently, they gained attention in drug design as targets, but they are still disregarded in the latter stages. Thus, this study aims to highlight the relevance of considering membrane lipids in the preclinical phase of drug development. (2) Methods: The interactions of a drug candidate for clinical use (licofelone) with a membrane model system made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated by combining Langmuir isotherms, Brewster angle microscopy (BAM), polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and grazing-incidence X-ray diffraction (GIXD) measurements. (3) Results: Licofelone caused the expansion of the DPPC isotherm without changing the lipid phase transition profile. Moreover, licofelone induced the reduction of DPPC packing density, while increasing the local order of the DPPC acyl chains. (4) Conclusions: The licofelone-induced alterations in the structural organization of phosphatidylcholine monolayers may be related to its pharmacological actions. Thus, the combination of studying drug-membrane interactions with the pharmacological characterization that occurs in the preclinical stage may gather additional information about the mechanisms of action and toxicity of drug candidates. Ultimately, the addition of this innovative step shall improve the success rate of drug development.
Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Pirróis/química , Desenvolvimento de Medicamentos , Lipídeos de Membrana/química , Microscopia , Estrutura Molecular , Análise Espectral , TemperaturaRESUMO
Gastrointestinal (GI) toxicity is a major drawback of the chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs). The NSAIDs topical actions on the protective phospholipid layers of the GI mucosa seem to be a central toxicity mechanism of these pharmaceuticals. This work describes the interactions of acemetacin, a commercialized NSAID, with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at pH 3.0, 5.0, and 7.4. This pH range was chosen to mimic the pH gradient found in the gastric mucosa, and to ultimately gain insights into the mechanisms underlying the acemetacin-induced gastric toxicity. Various experimental techniques were combined to characterize the partitioning of acemetacin in DMPC bilayers, and its effects on the phase transition behavior, as well as the structure and dynamics of DMPC bilayers. The acemetacin-DMPC interactions were clearly pH-dependent. The neutral (protonated) form of acemetacin had more affinity for the DMPC bilayer than the negatively charged form. Due to the higher affinity of neutral acemetacin, the drug effects on the phase transition and the structure and dynamics of the DMPC bilayer were more pronounced at lower pH values. In general, acemetacin decreased the temperature and the cooperativity of the lipid phase transition and induced changes in the packing and dynamics of the DMPC bilayer. These results support the hypothesis that acemetacin-induced gastric toxicity may be related to its effects on the protective phospholipid layers of the mucosal barrier.
Assuntos
Anti-Inflamatórios não Esteroides/química , Indometacina/análogos & derivados , Fosfatidilcolinas/química , Concentração de Íons de Hidrogênio , Indometacina/química , Cinética , Bicamadas Lipídicas/química , Estrutura Molecular , Transição de Fase , Eletricidade Estática , TemperaturaRESUMO
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Animais , Humanos , Relação Estrutura-AtividadeRESUMO
Sterile inflammation after injury is important for tissue restoration. In injured human and mouse tissues, macrophages were recently found to accumulate perivascularly. This study investigates if macrophages adopt a mural cell phenotype important for restoration after ischemic injury. Single-cell RNA sequencing of fate-mapped macrophages from ischemic mouse muscles demonstrates a macrophage-toward-mural cell switch of a subpopulation of macrophages with downregulated myeloid cell genes and upregulated mural cell genes, including PDGFRß. This observation was further strengthened when including unspliced transcripts in the analysis. The macrophage switch was proven functionally relevant, as induction of macrophage-specific PDGFRß deficiency prevented their perivascular macrophage phenotype, impaired vessel maturation and increased vessel leakiness, which ultimately reduced limb function. In conclusion, macrophages in adult ischemic tissue were demonstrated to undergo a cellular program to morphologically, transcriptomically and functionally resemble mural cells while weakening their macrophage identity. The macrophage-to-mural cell-like phenotypic switch is crucial for restoring tissue function and warrants further exploration as a potential target for immunotherapies to enhance healing.
Assuntos
Modelos Animais de Doenças , Isquemia , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Isquemia/metabolismo , Isquemia/patologia , Isquemia/genética , Fenótipo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/lesões , Cicatrização/genética , Cicatrização/fisiologia , Camundongos Endogâmicos C57BL , Camundongos , Masculino , Membro Posterior/irrigação sanguínea , Neovascularização Fisiológica/genética , Regulação para Cima , Transcriptoma , Análise de Célula Única , Biomarcadores/metabolismo , Recuperação de Função Fisiológica , Camundongos KnockoutRESUMO
This work focuses on the influence of rifabutin and two novel analogs, namely, N'-acetyl-rifabutin and N'-butanoyl-rifabutin, on the biophysical properties of lipid membranes. Monolayers and multilamellar vesicles composed of egg L-α-phosphatidylcholine:cholesterol in a molar ratio of 4:1 are chosen to mimic biological membranes. Several accurate biophysical techniques are used to establish a putative relationship between the chemical structure of the antimycobacterial compounds and their activity on the membranes. A combination of in situ experimental techniques, such as Langmuir isotherms, Brewster angle microscopy, polarization-modulated infrared reflection-absorption spectroscopy, and small-angle X-ray scattering, is used to assess the drug-membrane interaction. A relationship between the effect of a drug on the organization of the membranes and their chemical structure is found and may be useful in the development of new drugs with higher efficacy and fewer toxic effects.
Assuntos
Membranas Artificiais , Rifabutina/análogos & derivados , Antibacterianos/química , Colesterol/química , Módulo de Elasticidade , Fosfatidilcolinas/química , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade , Difração de Raios XRESUMO
PURPOSE: To study interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and membrane mimetic models. METHODS: The interactions of indomethacin and nimesulide with liposomes of dipalmitoylphosphatidylcholine (DPPC) at two physiological pH conditions (pH 7.4 and 5.0) were investigated by time-resolved and steady-state fluorescence techniques and derivative ultraviolet/visible absorption spectrophotometry. Fluorescence quenching studies that assess the location of the drugs interacting with the membrane were carried out using labeled liposomes with trimethylammonium-diphenylhexatriene (TMA-DPH), a fluorescent probe with well-known membrane localization. Partition of the drugs within membranes was determined by calculating their partition coefficients (K p ) between liposomes and water using derivative ultraviolet/visible absorption spectrophotometry in a temperature range of 37-50°C. The Van't Hoff analysis of the temperature dependence of K p values allowed calculating the membrane-water variation of enthalpy (ΔH wâm) and entropy (ΔS wâm) and consequently the Gibbs free energy (ΔG wâm). RESULTS: Results indicate that quenching, partitioning and thermodynamic parameters inherent to the interaction of the studied drugs with the membrane mimetic model are deeply dependent on the initial organization of the membrane, on the pH medium and on the physical properties of the drug. CONCLUSIONS: The interactions between NSAIDs and membranes are manifested as changes in the physical and thermodynamic properties of the bilayers. Depending on the composition and physical state of the membrane and the chemical structure of the NSAID, the interaction can support or prevent drug activity or toxicity.
Assuntos
1,2-Dipalmitoilfosfatidilcolina/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Indometacina/metabolismo , Lipossomos/metabolismo , Sulfonamidas/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Indometacina/química , Indometacina/farmacologia , Lipossomos/química , Espectrometria de Fluorescência , Sulfonamidas/química , Sulfonamidas/farmacologia , TermodinâmicaRESUMO
Although the discovery of the Golgi apparatus (GA) was made over 125 years ago, only a very limited number of therapeutic approaches have been developed to target this complex organelle. The GA serves as a modification and transport center for proteins and lipids and also has more recently emerged as an important store for some ions. The dysregulation of GA functions is implicated in many cellular processes associated with cancer and some GA proteins are indeed described as cancer biomarkers. This dysregulation can affect protein modification, localization, and secretion, but also cellular metabolism, redox status, extracellular pH, and the extracellular matrix structure. Consequently, it can directly or indirectly affect cancer progression. For these reasons, the GA is an appealing anticancer pharmacological target. Despite this, no anticancer drug specifically targeting the GA has reached the clinic and few have entered the clinical trial stage. Advances in nanodelivery approaches may help change this scenario by specifically targeting tumor cells and/or the GA through passive, active, or physical strategies. This article aims to examine the currently available anticancer GA-targeted drugs and the nanodelivery strategies explored for their administration. The potential benefits and challenges of modulating and specifically targeting the GA function in the context of cancer therapy are discussed.
RESUMO
Transfersomes have been highlighted as an interesting nanotechnology-based approach to facilitate the skin delivery of bioactive compounds. Nevertheless, the properties of these nanosystems still need to be improved to enable knowledge transfer to the pharmaceutical industry and the development of more efficacious topical medicines. Quality-by-design strategies, such as Box-Behnken factorial design (BBD), are in line with the current need to use sustainable processes to develop new formulations. Thus, this work aimed at optimizing the physicochemical properties of transfersomes for cutaneous applications, by applying a BBD strategy to incorporate mixed edge activators with opposing hydrophilic-lipophilic balance (HLB). Tween® 80 and Span® 80 were used as edge activators and ibuprofen sodium salt (IBU) was selected as the model drug. After the initial screening of the IBU solubility in aqueous media, a BBD protocol was implemented, and the optimized formulation displayed appropriate physicochemical properties for skin delivery. By comparing the optimized transfersomes to equivalent liposomes, the incorporation of mixed edge activators was found to be beneficial to upgrade the storage stability of the nanosystems. Furthermore, their cytocompatibility was shown by cell viability studies using 3D HaCaT cultures. Altogether, the data herein bode well for future advances in the use of mixed edge activators in transfersomes for the management of skin conditions.
RESUMO
There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400µg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.
Assuntos
Sistemas de Liberação de Medicamentos , Lipossomas Unilamelares , Ferro , LipídeosRESUMO
Systemic sclerosis (SSc), or scleroderma, is a chronic multisystem autoimmune disorder characterised by thickening and fibrosis of the skin and by the involvement of internal organs such as the lungs, kidneys, gastrointestinal tract, and heart. Because there is no cure, feasibly-implemented and easily accessible evidence-based interventions to improve health-related quality of life (HRQoL) are needed. Due to a lack of evidence, however, specific recommendations have not been made regarding non-pharmacological interventions (e.g. behavioural/psychological, educational, physical/occupational therapy) to improve HRQoL in SSc. The Scleroderma Patient-centred Intervention Network (SPIN) was recently organised to address this gap. SPIN is comprised of patient representatives, clinicians, and researchers from Canada, the USA, and Europe. The goal of SPIN, as described in this article, is to develop, test, and disseminate a set of accessible interventions designed to complement standard care in order to improve HRQoL outcomes in SSc.
Assuntos
Comportamento Cooperativo , Necessidades e Demandas de Serviços de Saúde/organização & administração , Comunicação Interdisciplinar , Cooperação Internacional , Assistência Centrada no Paciente/organização & administração , Qualidade de Vida , Escleroderma Sistêmico/terapia , Canadá , Europa (Continente) , Medicina Baseada em Evidências , Humanos , Objetivos Organizacionais , Defesa do Paciente , Médicos/organização & administração , Desenvolvimento de Programas , Pesquisadores/organização & administração , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico , Escleroderma Sistêmico/psicologia , Estados UnidosRESUMO
The human epidermis has a characteristic lipidic composition in the stratum corneum, where ceramides play a crucial role in the skin barrier homeostasis and in water-holding capacity. Several skin diseases, such as atopic dermatitis and psoriasis, exhibit a dysfunction in the lipid barrier with altered ceramide levels and increased loss of transepidermal water. Glucocorticoids are normally employed in the therapeutical management of these pathologies. However, they have shown a poor safety profile and reduced treatment efficiency. The main objective of this review is to, within the framework of the limitations of the currently available therapeutical approaches, establish the relevance of nanocarriers as a safe and efficient delivery strategy for glucocorticoids and ceramides in the topical treatment of skin disorders with barrier impairment.
RESUMO
There has been an increasing interest in using nanomaterials to develop innovative delivery systems [...].
RESUMO
BACKGROUND: The Scleroderma Patient-centered Intervention Network (SPIN) developed an online self-management program (SPIN-SELF) designed to improve disease-management self-efficacy in people with systemic sclerosis (SSc, or scleroderma). The aim of this study was to evaluate feasibility aspects for conducting a full-scale randomized controlled trial (RCT) of the SPIN-SELF Program. METHODS: This feasibility trial was embedded in the SPIN Cohort and utilized the cohort multiple RCT design. In this design, at the time of cohort enrollment, cohort participants consent to be assessed for trial eligibility and randomized prior to being informed about the trial. Participants in the intervention arm are informed and provide consent, but not the control group. Forty English-speaking SPIN Cohort participants from Canada, the USA, or the UK with low disease-management self-efficacy (Self-Efficacy for Managing Chronic Disease Scale [SEMCD] score ≤ 7) who were interested in using an online self-management program were randomized (3:2 ratio) to be offered the SPIN-SELF Program or usual care for 3 months. Program usage was examined via automated usage logs. User satisfaction was assessed with semi-structured interviews. Trial personnel time requirements and implementation challenges were logged. RESULTS: Of 40 SPIN Cohort participants randomized, 26 were allocated to SPIN-SELF and 14 to usual care. Automated eligibility and randomization procedures via the SPIN Cohort platform functioned properly, except that two participants with SEMCD scores > 7 (scores of 7.2 and 7.3, respectively) were included, which was caused by a system programming error that rounded SEMCD scores. Of 26 SPIN Cohort participants offered the SPIN-SELF Program, only 9 (35%) consented to use the program. Usage logs showed that use of the SPIN-SELF Program was low: 2 of 9 users (22%) logged into the program only once (median = 3), and 4 of 9 (44%) accessed none or only 1 of the 9 program's modules (median = 2). CONCLUSIONS: The results of this study will lead to substantial changes for the planned full-scale RCT of the SPIN-SELF Program that we will incorporate into a planned additional feasibility trial with progression to a full-scale trial. These changes include transitioning to a conventional RCT design with pre-randomization consent and supplementing the online self-help with peer-facilitated videoconference-based groups to enhance engagement. TRIAL REGISTRATION: clinicaltrials.gov , NCT03914781 . Registered 16 April 2019.
RESUMO
BACKGROUND: Cellular immune memory responses post coronavirus disease 2019 (COVID-19) have been difficult to assess due to the risks of contaminating the immune response readout with memory responses stemming from previous exposure to endemic coronaviruses. The work herein presents a large-scale long-term follow-up study investigating the correlation between symptomology and cellular immune responses four to five months post seroconversion based on a unique severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific peptide pool that contains no overlapping peptides with endemic human coronaviruses. METHODS: Peptide stimulated memory T cell responses were assessed with dual interferon-gamma (IFNγ) and interleukin (IL)-2 Fluorospot. Serological analyses were performed using a multiplex antigen bead array. RESULTS: Our work demonstrates that long-term SARS-CoV-2-specific memory T cell responses feature dual IFNγ and IL-2 responses, whereas cross-reactive memory T cell responses primarily generate IFNγ in response to SARS-CoV-2 peptide stimulation. T cell responses correlated to long-term humoral immune responses. Disease severity as well as specific COVID-19 symptoms correlated with the magnitude of the SARS-CoV-2-specific memory T cell response four to five months post seroconversion. CONCLUSION: Using a large cohort and a SARS-CoV-2-specific peptide pool we were able to substantiate that initial disease severity and symptoms correlate with the magnitude of the SARS-CoV-2-specific memory T cell responses.
Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Seguimentos , Humanos , Imunidade Celular , Índice de Gravidade de DoençaRESUMO
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.
Assuntos
Anti-Inflamatórios não Esteroides/química , Polarização de Fluorescência/métodos , Bicamadas Lipídicas/química , Lipossomos/química , Anisotropia , Concentração de Íons de Hidrogênio , Estrutura MolecularRESUMO
Ionic liquids (ILs) have increasingly been studied as key materials to upgrade the performance of many pharmaceutical formulations. In controlled delivery systems, ILs have improved multiple physicochemical properties, showing the relevance of continuing to study their incorporation into these formulations. Transfersomes are biocompatible nanovesicular systems, quite useful in controlled delivery. They have promising characteristics, such as elasticity and deformability, making them suitable for cutaneous delivery. Nonetheless, their overall properties and performance may still be improved. Herein, new TransfersomILs systems to load rutin were developed and the physicochemical properties of the formulations were assessed. These systems were prepared based on an optimized formulation obtained from a Box-Behnken factorial design (BBD). The impact of imidazole-based ILs, cholinium-based ILs, and their combinations on the cell viability of HaCaT cells and on the solubility of rutin was initially assessed. The newly developed TransfersomILs containing rutin presented a smaller size and, in general, a higher association efficiency, loading capacity, and total amount of drug release compared to the formulation without IL. The ILs also promoted the colloidal stability of the vesicles, upgrading storage stability. Thus, ILs were a bridge to develop new TransfersomILs systems with an overall improved performance.
RESUMO
Omeprazole is usually administered under an enteric coating. However, there is a Food and Drug Administration-approved strategy that enables its release in the stomach. When locally absorbed, omeprazole shows a higher efficacy and a cytoprotective effect, whose mechanism was still unknown. Therefore, we aimed to assess the effect of the absorption route on the gastric mucosa. 2D and 3D models of dipalmitoylphosphatidylcholine (DPPC) at different pH values (5.0 and 7.4) were used to mimic different absorption conditions. Several experimental techniques, namely, fluorescence studies, X-ray scattering methodologies, and Langmuir monolayers coupled with microscopy, X-ray diffraction, and infrared spectroscopy techniques, were combined with molecular dynamics simulations. The results showed that electrostatic and hydrophobic interactions between omeprazole and DPPC rearranged the conformational state of DPPC. Omeprazole intercalates among DPPC molecules, promoting domain formation with untilted phospholipids. Hence, the local release of omeprazole enables its action as a phospholipid-like drug, which can reinforce and protect the gastric mucosa.
Assuntos
Composição de Medicamentos , Omeprazol/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Liberação Controlada de Fármacos , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Omeprazol/química , Transição de Fase , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios XRESUMO
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.