RESUMO
Endothelial-like cells may be obtained from CD133+ mononuclear cells isolated from human umbilical cord blood (hUCB) and expanded using endothelial-inducing medium (E-CD133 cells). Their use in regenerative medicine has been explored by the potential not only to form vessels but also by the secretion of bioactive elements. Extracellular vesicles (EVs) are prominent messengers of this paracrine activity, transporting bioactive molecules that may guide cellular response under different conditions. Using RNA-Seq, we characterized the miRNA content of EVs derived from E-CD133 cells cultivated under normoxia (N-EVs) and hypoxia (H-EVs) and observed that changing the O2 status led to variations in the selective loading of miRNAs in the EVs. In silico analysis showed that among the targets of differentially loaded miRNAs, there are transcripts involved in pathways related to cell growth and survival, such as FoxO and HIF-1 pathways. The data obtained reinforce the pro-regenerative potential of EVs obtained from E-CD133 cells and shows that fine tuning of their properties may be regulated by culture conditions.
Assuntos
Vesículas Extracelulares , MicroRNAs , Proliferação de Células , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Hipóxia/metabolismo , MicroRNAs/metabolismoRESUMO
Chronic kidney disease (CKD) is characterized by structural abnormalities and the progressive loss of kidney function. Extracellular vesicles (EVs) from human umbilical cord tissue (hUCT)-derived mesenchymal stem cells (MSCs) and expanded human umbilical cord blood (hUCB)-derived CD133+ cells (eCD133+) maintain the characteristics of the parent cells, providing a new form of cell-free treatment. We evaluated the effects of EVs from hUCT-derived MSCs and hUCB-derived CD133+ cells on rats with CDK induced by an adenine-enriched diet. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The animals were randomized and divided into the MSC-EV group, eEPC-EV group and control group. Infusions occurred on the seventh and 14th days after CKD induction. Evaluations of kidney function were carried out by biochemical and histological analyses. Intense labeling of the α-SMA protein was observed when comparing the control with MSC-EVs. In both groups treated with EVs, a significant increase in serum albumin was observed, and the increase in cystatin C was inhibited. The results indicated improvements in renal function in CKD, demonstrating the therapeutic potential of EVs derived from MSCs and eCD133+ cells and suggesting the possibility that in the future, more than one type of EV will be used concurrently.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Animais , Células Cultivadas , Vesículas Extracelulares/metabolismo , Sangue Fetal , Células-Tronco Mesenquimais/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/terapiaRESUMO
Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.
Assuntos
Adipogenia/genética , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imunofenotipagem , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Família Multigênica , PPAR gama/genética , PPAR gama/metabolismo , RNA-Seq , Vacúolos/metabolismo , Via de Sinalização Wnt/genéticaRESUMO
Tissue-engineered heart valves aim to reproduce the biological properties of natural valves with anatomically correct structure and physiological performance. The closest alternative to creating an ideal heart valve substitute is to use decellularized porcine heart valves, due to their anatomy and availability. However, the immunological barrier and the structural maintenance limit the long-term physiological performance of decellularized porcine heart valves. This study investigated the extracellular matrix (ECM) structure of aortic and pulmonary porcine valves decellularized by a low concentration sodium dodecyl sulfate (SDS)-based method in order to determine the ECM scaffold (ECMS) conditions related to remodeling potential. To assess the structures of the leaflets and conduits of the heart valves, ECM components and their organization were evaluated by histology, biochemical analysis (BC), scanning electron microscopy, multiphoton microscopy, tensile test, immunofluorescence labeling (IF), and Raman microspectroscopy used to draw a profile of the cell niches. Histology and multiphoton imaging of decellularized aortic and pulmonary leaflets and conduits revealed a collagen and elastin histoarchitecture with rearrangement, loosening fibers, and glycosaminoglycan depletion confirmed by biochemistry quantification. The potential cytotoxicity of SDS residues was eliminated after 10 wash cycles. The mechanical properties of the structure of the valve indicated a functional resistance of decellularized ECM. The IF demonstrated the presence of basement membrane, suggesting a potential structure for host cell attachment. The RM analysis showed evidence of molecular interactions, suggesting conservation of the chemical composition, particularly among the protein molecular structures. The structural analyses performed in the semilunar porcine heart valves demonstrate that decellularized ECMS has structural properties that support physiological performance and potential host tissue integration. In fact, decellularized leaflet scaffolds were prone to cell interaction after human adipose-derived stromal cell seeding and culturing. Further analysis of biocompatibility, particularly the ECM-cell interaction, can elucidate the remodeling process, in preserved decellularized heart valve scaffold.
Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas/cirurgia , Valva Pulmonar/cirurgia , Transplante Heterólogo , Animais , Valva Aórtica/cirurgia , Fenômenos Biomecânicos/fisiologia , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Valvas Cardíacas/fisiologia , Humanos , Masculino , Suínos , Engenharia Tecidual/métodosRESUMO
Pericardial membrane derived from bovine heart tissues is a promising source of material for use in tissue-engineering applications. However, tissue processing is required for its use in humans due to the presence of animal antigens. Therefore, the purpose of this study was to evaluate the structural integrity and biocompatibility of the bovine pericardium (BP) after a soft decellularization process with a 0.1% sodium dodecyl sulfate (SDS) solution, with the aim to remove xenoantigens and preserve extracellular matrix (ECM) bioactivity. The decellularization process promoted a mean reduction of 77% of the amount of DNA in the samples in which cell nuclei staining was undetectable. The ECM content was maintained as mostly preserved after decellularization as well as its biomechanical properties. In addition, the decellularization protocol has proven to be efficient in removing the xenoantigen alpha-gal, which is responsible for immune rejection. The decellularized BP was noncytotoxic in vitro and allowed human adipose-derived stem cell (hASC) adhesion. Finally, after 7 days in culture, the tissue scaffold became repopulated by hASCs, and after 30 days, the ECM protein pro-collagen I was seen in the scaffold. Together, these characteristics indicated that soft BP decellularization with 0.1% SDS solution allows the acquirement of a bioactive scaffold suitable for cell repopulation and potentially useful for regenerative medicine.
Assuntos
Matriz Extracelular/imunologia , Pericárdio/imunologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Bovinos , Matriz Extracelular/metabolismo , Humanos , Dodecilsulfato de Sódio/metabolismo , Engenharia Tecidual/métodos , Transplante Heterólogo/métodosRESUMO
Extracellular vesicles (EVs) are particles released from different cell types and represent key components of paracrine secretion. Accumulating evidence supports the beneficial effects of EVs for tissue regeneration. In this study, discarded human heart tissues were used to isolate human heart-derived extracellular vesicles (hH-EVs). We used nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM) to physically characterize hH-EVs and mass spectrometry (MS) to profile the protein content in these particles. The MS analysis identified a total of 1248 proteins. Gene ontology (GO) enrichment analysis in hH-EVs revealed the proteins involved in processes, such as the regulation of cell death and response to wounding. The potential of hH-EVs to induce proliferation, adhesion, angiogenesis and wound healing was investigated in vitro. Our findings demonstrate that hH-EVs have the potential to induce proliferation and angiogenesis in endothelial cells, improve wound healing and reduce mesenchymal stem-cell adhesion. Last, we showed that hH-EVs were able to significantly promote mesenchymal stem-cell recellularization of decellularized porcine heart valve leaflets. Altogether our data confirmed that hH-EVs modulate cellular processes, shedding light on the potential of these particles for tissue regeneration and for scaffold recellularization.
Assuntos
Vesículas Extracelulares/metabolismo , Valvas Cardíacas/química , Células-Tronco Mesenquimais/citologia , Proteínas/metabolismo , Proteômica/métodos , Animais , Brasil , Adesão Celular , Proliferação de Células , Células Cultivadas , Ontologia Genética , Valvas Cardíacas/metabolismo , Humanos , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Nanotecnologia , Neovascularização Fisiológica , Suínos , Bancos de TecidosRESUMO
Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi-specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti-T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania, a pathogen with high similarity to T. cruzi, showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD.
Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Doença de Chagas/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Trypanosoma cruzi/imunologia , Anticorpos Antiprotozoários/imunologia , Doença de Chagas/parasitologia , Reações Cruzadas/imunologia , Reações Falso-Negativas , Humanos , Leishmania/imunologia , Análise em Microsséries/métodos , Proteínas Recombinantes/imunologiaRESUMO
p-Cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) are uremic toxins found in chronic kidney disease (CKD) that are closely related to endothelial extracellular vesicles (EVs) formation. The present study aimed to understand the role of EVs and their role in cell adhesion and migration, inflammation, and oxidative stress. Human endothelial cells were treated with PCS, IS, and Pi in pre-established uremic and kinetic recommendations. EVs were characterized using scanning electron microscopy, flow cytometry, and NanoSight assays. The concentrations of EVs were established using Alamar Blue and MTT assays. Cell adhesion to extracellular matrix proteins was analyzed using an adhesion assay. Inflammation and oxidative stress were assessed by vascular cell adhesion molecule-1 expression/monocyte migration and reactive oxygen species production, respectively. The capacity of EVs to stimulate endothelial cell migration was evaluated using a wound-healing assay. Our data showed that endothelial cells stimulated with uremic toxins can induce the formation of EVs of different sizes, quantities, and concentrations, depending on the uremic toxin used. Cell adhesion was significantly (P < 0.01) stimulated in cells exposed to PCS-induced extracellular vesicles (PCSEVs) and inorganic phosphate-induced extracellular vesicles (PiEVs). Cell migration was significantly (P < 0.05) stimulated by PCSEVs. VCAM-1 expression was evident in cells treated with PCSEVs and IS-induced extracellular vesicles (ISEVs). EVs are not able to stimulate monocyte migration or oxidative stress. In conclusion, EVs may be a biomarker of endothelial injury and the inflammatory process, playing an important role in cell-to-cell communication and pathophysiological processes, although more studies are needed to better understand the mechanisms of EVs in uremia.
Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Cresóis/toxicidade , Células Endoteliais/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Indicã/toxicidade , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatos/toxicidade , Ésteres do Ácido Sulfúrico/toxicidade , Uremia/patologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Transdução de Sinais , Uremia/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0234043.].
RESUMO
Syphilis serodiagnosis is challenging because distinct clinical forms of the infection may influence serological performance and discordant results between tests make clinical decisions difficult. Several recombinant Treponema pallidum-proteins have already been tested for syphilis diagnosis and they are critical to achieve high accuracy in serological testing. Our aim was to assess the varied from performance of T. pallidum-recombinant proteins TmpA, TpN17 and TpN47 for syphilis serodiagnosis. The proteins were evaluated using sera of 338 T. pallidum-negative, 173 T. pallidum-positive individuals and 209 sera from individuals infected with unrelated diseases. The diagnostic potential was validated by analysis of ROC curves. In the liquid microarray analyses, the ROC curve varied from 99.0% for TmpA and TpN17 to 100% for TpN47. The sensitivity score yielded values of up to 90% for TpN17, 100% for TpN47 and 80.0% for TmpA. The lowest and highest specificity values were presented by TpN47 (91.9%) and TmpA antigens (100%), respectively. TpN47 showed the highest accuracy score (95.5%) among all the recombinant proteins assayed. For the ELISA, the ROC curve was 97.2%, 91.8% and 81.6% for TpN17, TmpA and TpN47, respectively. TpN17 and TmpA yielded a sensitivity of 69.9%, while TpN47 obtained a value of 53.8%. Specificity was almost 100% for all three proteins. No cross-reaction was observed for TpN17 in the serum samples from non-bacterial infections. Regarding leptospirosis-positive samples, cross-reactivity score was varied from 8.6 to 34.6%. This is most probably due to conservation of the epitopes in these proteins across bacteria. The use of recombinant proteins in immunoassays for syphilis diagnosis was showed provide greater reliability to results of the treponemal assays. Despite the low sensitivity, the proteins showed high diagnostic capacity due to the AUC values found. However, an improvement in sensitivity could be achieved when antigenic mixtures are evaluated.
Assuntos
Proteínas de Bactérias/imunologia , Proteínas Recombinantes/imunologia , Testes Sorológicos , Sífilis/diagnóstico , Treponema pallidum/imunologia , Reações Cruzadas , Sífilis/imunologiaRESUMO
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
RESUMO
BACKGROUND: This study was designed to evaluate whether overconsumption of NaCl, a well-known risk factor for hypertension, leads to erectile dysfunction in rodents. METHODS: Male Wistar rats received regular chow (control group) or 4% NaCl chow for 24 weeks and were subjected to blood pressure measurement and apomorphine-induced erection. Moreover, cavernosal strips from both the control and 4% NaCl groups were evaluated in organ baths. RESULTS: Animals subjected to 4% NaCl chow did not develop hypertension but presented a significant reduction in the total number of erections following apomorphine administration as compared with the control group. The addition of high KCl or phenylephrine resulted in similar contractile responses in the corpus cavernosal strips from both the control and 4% NaCl groups. However, electrical field stimulation-induced contraction was significantly enhanced in cavernosal strips from animals exposed to 4% NaCl. Incubation of Y-27632, but not of atropine and Nω-nitro-l-arginine methyl ester (L-NAME), entirely prevented the potentiation of the contractile responses evoked by electrical stimulation. The enhanced contractile responses evoked by electrical stimulation found in the high-salt group were also avoided in the absence of extracellular calcium. Concentration-response curves of CaCl2 revealed augmented contractility in response to extracellular calcium in cavernosal strips from the 4% NaCl-treated rats, compared with control samples. CONCLUSIONS: A high-salt diet alone rendered the animals less responsive to apomorphine-induced penile erection and enhanced neurally mediated contractile responses in the corpus cavernosum, a clear indication that overconsumption of sodium can lead to erectile dysfunction even without the development of hypertension.
Assuntos
Apomorfina/farmacologia , Disfunção Erétil/etiologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/inervação , Ereção Peniana/efeitos dos fármacos , Pênis/inervação , Cloreto de Sódio na Dieta/toxicidade , Animais , Sinalização do Cálcio , Estimulação Elétrica , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Masculino , Ratos Wistar , Quinases Associadas a rho/metabolismoRESUMO
Diverse techniques have been developed to analyze antibody-mediated responses to infections. However, the most common tests, i.e., enzyme-linked immunosorbent assays, require separate reactions for each antigen and consequently necessitate large sample volumes. Luminex technology allows the detection of multiple antibodies in a single experiment, but nonspecific binding can impair the results. Therefore, we examined the use of Escherichia coli lysates to reduce nonspecific binding and improve the results of liquid microarrays based on Luminex technology. Anti-bacteria antibodies were detected in human serum samples, as evidenced by high median fluorescence intensity (MFI) in assays performed with paramagnetic microspheres coupled with E. coli lysates. Moreover, the addition of an E. coli lysate as a blocker reduced the nonspecific binding of antigens produced by E. coli in a concentration-dependent manner. Tris-HCl reduced MFI values in negative samples, but did not affect MFI for positive samples. For microspheres coupled with different antigens, an E. coli lysate blocker significantly improved the fluorescence signals from positive samples. The addition of Tris-HCl and the E. coli lysate induced antigen-specific differences in MFI. This combination of the E. coli lysate blocker and Tris-HCl yielded a statistically significant improvement in MFI in the assays for Chagas disease and hepatitis C virus samples. However, for the Treponema pallidum p47 antigen improvement in MFI was only observed for the preparation with the E. coli blocker at a concentration of 3%. In conclusion, the addition of an E. coli lysate and Tris-HCl to the microarray assay reduced the nonspecific binding of human anti-bacteria antibodies and, therefore, increased the specific MFI.
Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Escherichia coli/imunologia , Imunoensaio/métodos , Anticorpos Antiprotozoários/sangue , Especificidade de Anticorpos , Antígenos de Bactérias/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli/química , Anticorpos Anti-Hepatite C/sangue , Humanos , Análise em Microsséries , Microesferas , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Treponema pallidum/química , Treponema pallidum/imunologia , Trypanosoma cruzi/imunologia , beta-Lactamases/imunologiaRESUMO
Abstract Hedyosmum brasiliense Miq., Chloranthaceae, has been used in Southern Brazil as a sedative, anti-inflammatory, and aphrodisiac. In this study, endothelium-intact and endothelium-denuded rat aortic rings and strips of corpus cavernosum were used to investigate the relaxant effects of an hexane fraction of leaves of H. brasiliense and its sesquiterpene lactones 13-hydroxy-8,9-dehydroshizukanolide, podoandin, and elemanolide 15-acetoxy-isogermafurenolide. The incubation of hexane fraction of leaves of H. brasiliense resulted in significant relaxation of endothelium-intact aortic rings previously contracted by phenylephrine. In addition, 13-hydroxy-8,9-dehydroshizukanolide and podoandin displayed a clear concentration-dependent ability to relax endothelium-intact (∼85 to 90%) and endothelium-denuded (∼45 to 55%) rat aortic rings. A less pronounced vascular relaxation was recorded when 15-hydroxy-isogermafurenolide was tested. Interestingly, in tissues previously incubated with the nitric oxide synthase inhibitor L-NAME (100 µM), both 13-hydroxy-8,9-dehydroshizukanolide and podoandin had their effects in endothelium-intact vessels reduced to the same degree of relaxation observed in endothelium-denuded aortic rings. Podoandin, 13-hydroxy-8,9-dehydroshizukanolide, and 15-acetoxy-isogermafurenolide (100 µM) were also able to relax precontracted corpus cavernosum strips by 49.5 ± 3.9%, 65.9 ± 7.3% and 57.9 ± 5.5%, respectively. Our results demonstrated that 13-hydroxy-8,9-dehydroshizukanolide, podoandin and 15-acetoxy-isogermafurenolide, isolated from H. brasiliense, generate both endothelium-dependent and -independent relaxation of rat aortic rings, as well as being able to induce in vitro relaxation of rat corpus cavernosum. Importantly, the endothelium-dependent effect is fully dependent on nitric oxide production. Considering that penile erection depends on both relaxation of cavernosal smooth muscle and inflow of blood for the cavernous bodies, this is the first study reporting experimental evidence supporting the aphrodisiac properties of H. brasiliense.