Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_2): ii4-ii10, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39230700

RESUMO

With the development of high-throughput technologies, genomics datasets rapidly grow in size, including functional genomics data. This has allowed the training of large Deep Learning (DL) models to predict epigenetic readouts, such as protein binding or histone modifications, from genome sequences. However, large dataset sizes come at a price of data consistency, often aggregating results from a large number of studies, conducted under varying experimental conditions. While data from large-scale consortia are useful as they allow studying the effects of different biological conditions, they can also contain unwanted biases from confounding experimental factors. Here, we introduce Metadata-guided Feature Disentanglement (MFD)-an approach that allows disentangling biologically relevant features from potential technical biases. MFD incorporates target metadata into model training, by conditioning weights of the model output layer on different experimental factors. It then separates the factors into disjoint groups and enforces independence of the corresponding feature subspaces with an adversarially learned penalty. We show that the metadata-driven disentanglement approach allows for better model introspection, by connecting latent features to experimental factors, without compromising, or even improving performance in downstream tasks, such as enhancer prediction, or genetic variant discovery. The code will be made available at https://github.com/HealthML/MFD.


Assuntos
Genômica , Metadados , Genômica/métodos , Aprendizado Profundo , Humanos
2.
Bioinformatics ; 38(8): 2278-2286, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35139148

RESUMO

MOTIVATION: Limited data access has hindered the field of precision medicine from exploring its full potential, e.g. concerning machine learning and privacy and data protection rules.Our study evaluates the efficacy of federated Random Forests (FRF) models, focusing particularly on the heterogeneity within and between datasets. We addressed three common challenges: (i) number of parties, (ii) sizes of datasets and (iii) imbalanced phenotypes, evaluated on five biomedical datasets. RESULTS: The FRF outperformed the average local models and performed comparably to the data-centralized models trained on the entire data. With an increasing number of models and decreasing dataset size, the performance of local models decreases drastically. The FRF, however, do not decrease significantly. When combining datasets of different sizes, the FRF vastly improve compared to the average local models. We demonstrate that the FRF remain more robust and outperform the local models by analyzing different class-imbalances.Our results support that FRF overcome boundaries of clinical research and enables collaborations across institutes without violating privacy or legal regulations. Clinicians benefit from a vast collection of unbiased data aggregated from different geographic locations, demographics and other varying factors. They can build more generalizable models to make better clinical decisions, which will have relevance, especially for patients in rural areas and rare or geographically uncommon diseases, enabling personalized treatment. In combination with secure multi-party computation, federated learning has the power to revolutionize clinical practice by increasing the accuracy and robustness of healthcare AI and thus paving the way for precision medicine. AVAILABILITY AND IMPLEMENTATION: The implementation of the federated random forests can be found at https://featurecloud.ai/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Privacidade , Algoritmo Florestas Aleatórias , Aprendizado de Máquina , Medicina de Precisão , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA