Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(6): 1669-1678, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38820192

RESUMO

HUH-tags have emerged as versatile fusion partners that mediate sequence specific protein-ssDNA bioconjugation through a simple and efficient reaction. Here we present HUHgle, a python-based interactive tool for the visualization, design, and optimization of substrates for HUH-tag mediated covalent labeling of proteins of interest with ssDNA substrates of interest. HUHgle streamlines design processes by integrating an intuitive plotting interface with a search function capable of predicting and displaying protein-ssDNA bioconjugate formation efficiency and specificity in proposed HUH-tag/ssDNA sequence combinations. Validation demonstrates that HUHgle accurately predicts product formation of HUH-tag mediated bioconjugation for single- and orthogonal-labeling reactions. In order to maximize the accessibility and utility of HUHgle, we have implemented it as a user-friendly Google Colab notebook which facilitates broad use of this tool, regardless of coding expertise.


Assuntos
DNA de Cadeia Simples , Software , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas/metabolismo , Proteínas/química , Proteínas/genética
2.
bioRxiv ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39185166

RESUMO

Replication-initiating HUH-endonucleases (Reps) are enzymes that form covalent bonds with single-stranded DNA (ssDNA) in a sequence specific manner to initiate rolling circle replication. These nucleases have been co-opted for use in biotechnology as sequence specific protein-ssDNA bioconjugation fusion partners dubbed 'HUH-tags'. Here, we describe the engineering and in vitro characterization of a series of laboratory evolved HUH-tags capable of forming robust sequence-directed covalent bonds with unmodified RNA substrates. We show that promiscuous Rep-RNA interaction can be enhanced through directed evolution from nearly undetectable levels in wildtype enzymes to robust reactivity in final engineered iterations. Taken together, these engineered HUH-tags represent a promising platform for enabling site-specific protein-RNA covalent bioconjugation in vitro, potentially mediating a host of new applications and offering a valuable addition to the HUH-tag repertoire.

3.
bioRxiv ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39484510

RESUMO

Notch plays critical roles in developmental processes and disease pathogenesis, which has led to numerous efforts to modulate its function with small molecules and antibodies. Here we present a nanobody inhibitor of Notch signaling, derived from a synthetic phage-display library targeting the notch Negative Regulatory Region (NRR). The nanobody inhibits Notch signaling in a luciferase reporter assay and in Notch-dependent hematopoietic progenitor cell differentiation assay, despite a modest 19uM affinity for Notch. We addressed the low affinity by fusion to a membrane-associating domain derived from the ß-Pore forming toxin Aerolysin, resulting in a significantly improved IC50 for Notch inhibition. The nanobody-aerolysin fusion inhibits proliferation of T-ALL cell lines with similar efficacy to other Notch pathway inhibitors. Overall, this study reports the development of a Notch inhibitory antibody, and demonstrates a proof-of-concept for a generalizable strategy to increase the efficacy and potency of low-affinity antibody binders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA