RESUMO
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.
Assuntos
Lectinas , Alga Marinha , Humanos , Lectinas/farmacologia , Lectinas/química , Plantas , Biotecnologia , Antivirais/farmacologia , Alga Marinha/químicaRESUMO
Plant bacterial pathogens can be devastating and compromise entire crops of fruit and vegetables worldwide. The consequences of bacterial plant infections represent not only relevant economical losses, but also the reduction of food availability. Synthetic bactericides have been the most used tool to control bacterial diseases, representing an expensive investment for the producers, since cyclic applications are usually necessary, and are a potential threat to the environment. The development of greener methodologies is of paramount importance, and some options are already available in the market, usually related to genetic manipulation or plant community modulation, as in the case of biocontrol. Seaweeds are one of the richest sources of bioactive compounds, already being used in different industries such as cosmetics, food, medicine, pharmaceutical investigation, and agriculture, among others. They also arise as an eco-friendly alternative to synthetic bactericides. Several studies have already demonstrated their inhibitory activity over relevant bacterial phytopathogens, some of these compounds are known for their eliciting ability to trigger priming defense mechanisms. The present work aims to gather the available information regarding seaweed extracts/compounds with antibacterial activity and eliciting potential to control bacterial phytopathogens, highlighting the extracts from brown algae with protective properties against microbial attack.
Assuntos
Phaeophyceae , Alga Marinha , Verduras , Bactérias , PlantasRESUMO
Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.
Assuntos
Antineoplásicos/química , Antioxidantes/química , Antivirais/química , Agentes de Imunomodulação/química , Oligossacarídeos/química , Compostos Fitoquímicos/química , Mucilagem Vegetal/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Indústria Alimentícia/métodos , Humanos , Relação Estrutura-AtividadeRESUMO
The notion that thermal specialists from tropical regions live closer to their temperature limits than temperate eurytherms, seems too generalized. Species specific differences in physiological and biochemical stress reactions are linked to key components of organism fitness, like metabolic capacity, which indicates that acclimation potential across latitudes might be highly diverse rather than simplistic. In this study the exposure of a tropical (Holothuria scabra) and a temperate (Holothuria forskali) sea cucumber species to identical cold- and warm-acclimation stress was compared using the key metabolic parameters, respiration rate, enzyme activity (ETS, LDH, IDH), and energy reserve fractions (lipid, carbohydrate and protein). Results show much broader respiratory adjustments, as response to temperature change, in H. scabra (2-30 µgO2*gww-1*h-1) compared to H. forskali (1.5-6.6 µgO2*gww-1*h-1). Moreover, the tropical species showed clearly pronounced up and down regulation of metabolic enzymes and shifts in energy reserves, due to thermal acclimation, while the same metabolic indicators remained consistent in the temperate species. In summary, these findings indicate enhanced metabolic plasticity in H. scabra at the cost of elevated energy expenditures, which seems to favor the tropical stenotherm in terms of thermal acclimation capacity. The comparison of such holistic metabolic analyses between conspecifics and congeners, may help to predict the heterogeneous effects of global temperature changes across latitudinal gradients.
Assuntos
Aclimatação/fisiologia , Holothuria/fisiologia , Animais , Temperatura Baixa , Metabolismo Energético , Temperatura AltaRESUMO
Considered a major environmental concern, ocean acidification has induced a recent research boost into effects on marine biodiversity and possible ecological, physiological, and behavioural impacts. Although the majority of literature indicate negative effects of future acidification scenarios, most studies are conducted for just a few days or weeks, which may be insufficient to detect the capacity of an organism to adjust to environmental changes through phenotypic plasticity. Here, the effects and the capacity of sand smelt larvae Atherina presbyter to cope and recover (through a treatment combination strategy) from short (15 days) and long-term exposure (45 days) to increasing pCO2 levels (control: ~515⯵atm, pH =â¯8.07; medium: ~940 µatm, pH =â¯7.84; high: ~1500 µatm, pH =â¯7.66) were measured, addressing larval development traits, behavioural lateralization, and biochemical biomarkers related with oxidative stress and damage, and energy metabolism and reserves. Although behavioural lateralization was not affected by high pCO2 exposure, morphometric changes, energetic costs, and oxidative stress damage were impacted differently through different exposures periods. Generally, short-time exposures led to different responses to either medium or high pCO2 levels (e.g. development, cellular metabolism, or damage), while on the long-term the response patterns tend to become similar between them, with both acidification scenarios inducing DNA damage and tending to lower growth rates. Additionally, when organisms were transferred to lower acidified condition, they were not able to recover from the mentioned DNA damage impacts. Overall, results suggest that exposure to future ocean acidification scenarios can induce sublethal effects on early life-stages of fish, but effects are dependent on duration of exposure, and are likely not reversible. Furthermore, to improve our understanding on species sensitivity and adaptation strategies, results reinforce the need to use multiple biological endpoints when assessing the effects of ocean acidification on marine organisms.
Assuntos
Aclimatação/efeitos dos fármacos , Dióxido de Carbono/análise , Larva/efeitos dos fármacos , Osmeriformes/crescimento & desenvolvimento , Água do Mar/química , Animais , Dióxido de Carbono/toxicidade , Metabolismo Energético/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Larva/metabolismo , Oceanos e Mares , PortugalRESUMO
Sargassum muticum is a brown seaweed with strong potential to be used as a functional food ingredient, mainly due to its antioxidant properties. It is widely used in traditional oriental medicine for the treatment of numerous diseases. Nevertheless, few studies have been conducted to add scientific evidence on its effects as well as on the mechanisms of action involved. In this work, the human cell line MCF-7 was used as an in vitro cellular model to evaluate the capability of Sargassum muticum enriched fractions to protect cells on an oxidative stress condition. The concentration of the bioactive compounds was obtained by vacuum liquid chromatography applied on methanol (M) and 1:1 methanol:dichloromethane (MD) crude extracts, resulting in seven enriched fractions from the M extraction (MF2-MF8), and eight fractions from the MD extraction (MDF1-MDF8). All fractions were tested for cytotoxic properties on MCF-7 cells and the nontoxic ones were tested for their capacity to blunt the damaging effects of hydrogen peroxide-induced oxidative stress. The nontoxic effects were also confirmed in 3T3 fibroblast cells as a nontumor cell line. The antioxidant potential of each fraction, as well as changes in the cell's real-time hydrogen peroxide production, in the mitochondrial membrane potential, and in Caspase-9 activity were evaluated. The results suggest that the protective effects evidenced by S. muticum can be related with the inhibition of hydrogen peroxide production and the inhibition of Caspase-9 activity.
Assuntos
Produtos Biológicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sargassum/química , Sargassum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/química , Caspase 9 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacosRESUMO
Sericostoma vittatum is a caddisfly species, endemic to the Iberian Peninsula, proposed as a biomonitor species for lotic ecosystems. Since inhibition of cholinesterases׳ (ChE) activity has been used to evaluate the exposure of macroinvertebrates to organophosphates and carbamate pesticides, this work intended to characterize the ChE present in this species so their activity can be used as a potential biomarker of exposure. Biochemical and pharmacological properties of ChE were characterized in this caddisfly species using different substrates (acetylthiocholine iodide, propionylthiocholine iodide, and butyrylthiocholine iodide) and selective inhibitors (eserine sulfate, BW284c51, and iso-OMPA). Also, the in vitro effects of two insecticides (carbaryl and chlorantraniliprole) and two psychiatric drugs (fluoxetine and carbamazepine) on ChE activity were investigated. The results suggest that S. vittatum possess mainly AChE able to hydrolyze both substrates acetylthiocholine and propionylthiocholine since: (1) it hydrolyzes the substrate acetylthiocholine and propionylcholine at similar rates and butyrylthiocholine at a much lower rate; (2) it is highly sensitive to eserine sulfate and BW284c51, but not to iso-OMPA; and (3) its activity is inhibited by excess of substrate, a characteristic of typical AChE. in vitro inhibitions were observed only for carbaryl exposure while exposure to chlorantraniliprole and to relevant environmental concentrations of psychiatric drugs did not cause any significant effect on AChE activity. This study suggests that AChE activity in caddisflies can indeed be used to discriminate the effects of specific insecticides in monitoring programs. The use of non-target species such as caddisflies in ecotoxicological research in lotic ecosystems is also discussed.
Assuntos
Colinesterases/metabolismo , Insetos/efeitos dos fármacos , Insetos/enzimologia , Inseticidas/farmacologia , Psicotrópicos/farmacologia , Animais , Biomarcadores , Inibidores da Colinesterase/farmacologia , Ativação Enzimática/efeitos dos fármacosRESUMO
Detritus processing is vital for freshwater ecosystems that depend on the leaf litter from riparian vegetation and is mediated by microorganisms and aquatic invertebrates. Shredder invertebrates transform coarse particulate organic matter into fine particulate organic matter used as food by collector species. Direct and indirect effects of contaminants can impair detritus processing and thus affect the functioning of these ecosystems. Here, we assessed the combined effects of a toxic metal (cadmium) and resource quality (leaf species) on detritus processing and shredder-collector interactions. We considered two types of leaves, alder and eucalyptus that were microbially conditioned under different Cd concentrations in the laboratory. The microbial communities present on leaves were analyzed by Denaturing Gradient Gel Electrophoresis (DGGE), and we also measured microbial respiration rates. Sericostoma vittatum (a caddisfly shredder) and Chironomus riparius (a midge collector) were also exposed to Cd and allowed to consume the corresponding alder or eucalyptus leaves. We evaluated C. riparius growth and leaf mass loss in multispecies microcosms. Cadmium exposure affected leaf conditioning and fungal diversity on both leaf species, as assessed by DGGE. Cadmium exposure also affected the mass loss of alder leaves by reductions in detritivore feeding, and impaired C. riparius growth. Chironomus riparius consumed alder leaf discs in the absence of shredders, but S. vittatum appear to promote C. riparius growth in treatments containing eucalyptus. These results show that indirect effects of contaminants along detritus-processing chains can occur through effects on shredder-collector interactions such as facilitation but they also depend on the nutritional quality of detritus and on sensitivity and feeding plasticity of detritivore species.
Assuntos
Cádmio/toxicidade , Chironomidae/efeitos dos fármacos , Cadeia Alimentar , Poluentes da Água/toxicidade , Alnus , Animais , Chironomidae/crescimento & desenvolvimento , Eucalyptus , Consórcios Microbianos , Folhas de PlantaRESUMO
Forecasts indicate that rising temperatures towards the future and the expansion of dead zones will change environmental suitability for fish early stages. Therefore, we assessed the chronic effects of warming (26 °C), hypoxia (<2-2.5 mg L-1) or their combination on mortality rate, growth, behaviour, energy metabolism and oxidative stress using Atherina presbyter larvae as a model species. There were no differences between the treatments in terms of mortality rate. The combination of warming and hypoxia induced faster loss of body mass (+22.7%). Warming, hypoxia or their combination enhanced boldness (+14.7-25.4%), but decreased exploration (-95%-121%), increased the time in frozen state (+60.6-80.5%) and depleted swimming speed (-45.6-50.5%). Moreover, routine metabolic rate was depleted under hypoxia or under the combination of warming and hypoxia (-56.6 and 57.2%, respectively). Under hypoxia, increased catalase activity (+56.3%) indicates some level of antioxidant defence capacity, although increased DNA damage (+25.2%) has also been observed. Larvae also exhibited a great capacity to maintain the anaerobic metabolism stable in all situations, but the aerobic metabolism is enhanced (+19.3%) when exposed to the combination of both stressors. The integrative approach showed that changes in most target responses can be explained physiologically by oxidative stress responses. Increased oxidative damages (lipid peroxidation and DNA damage) and increased interaction between antioxidant enzymes (superoxide dismutase and catalase) are associated to increased time in frozen state and decreased swimming activity, growth rates and boldness. Under all stressful situations, larvae reduced energy-consuming behaviours (e.g. depleted exploration and swimming activity) likely to stabilize or compensate for the aerobic and anaerobic metabolisms. Despite being an active small pelagic fish, we concluded that the sensitive larval phase exhibited complex coping strategies to physiologically acclimate under thermal and hypoxic stress via behavioural responses.
Assuntos
Larva , Estresse Oxidativo , Animais , Larva/fisiologia , Comportamento Animal , Metabolismo Energético , Estresse Fisiológico/fisiologia , Natação , TemperaturaRESUMO
Ocean's characteristics are rapidly changing, modifying environmental suitability for early life stages of fish. We assessed whether the chronic effects of warming (24 °C) and hypoxia (<2-2.5 mg L-1) will be amplified by the combination of these stressors on mortality, growth, behaviour, metabolism and oxidative stress of early stages of the white seabream Diplodus sargus. Combined warming and hypoxia synergistically increased larval mortality by >51%. Warming induced faster growth in length and slower gains in weight when compared to other treatments. Boldness and exploration were not directly affected, but swimming activity increased under all test treatments. Under the combination of warming and hypoxia, routine metabolic rate (RMR) significantly decreases when compared to other treatments and shows a negative thermal dependence. Superoxide dismutase and catalase activities increased under warming and were maintained similar to control levels under hypoxia or under combined stressors. Under hypoxia, the enzymatic activities were not enough to prevent oxidative damages as lipid peroxidation and DNA damage increased above control levels. Hypoxia reduced electron transport system activity (cellular respiration) and isocitrate dehydrogenase activity (aerobic metabolism) below control levels. However, lactate dehydrogenase activity (anaerobic metabolism) did not differ among treatments. A Redundancy Analysis showed that â¼99% of the variability in mortality, growth, behaviour and RMR among treatments can be explained by molecular responses. Mortality and growth are highly influenced by oxidative stress and energy metabolism, exhibiting a positive relationship with reactive oxygen species and a negative relationship with aerobic metabolism, regardless of treatment. Under hypoxic condition, RMR, boldness and swimming activity have a positive relationship with anaerobic metabolism regardless of temperature. Thus, seabreams may use anaerobic reliance to counterbalance the effects of the stressors on RMR, activity and growth. The outcomes suggests that early life stages of white seabream overcame the single and combined effects of hypoxia and warming.
Assuntos
Hipóxia , Dourada , Animais , Temperatura , Dourada/metabolismo , Larva , Oceanos e MaresRESUMO
Sea turtles, with their global distribution and complex life cycle, often accumulate pollutants such as metals and metalloids due to their extended lifespan and feeding habits. However, there are limited studies exploring the impact of metal pollution on the reproductive health of female sea turtles, specifically focusing on the quality of their eggs, which has significant implications for the future generations of these charismatic animals. São Tomé Island, a crucial nesting and feeding habitat for green sea turtles, underscores the urgent need for comprehensive research in this ecologically significant area. This study aimed to investigate whether metals and metalloids in the blood of nesting female green sea turtles induce genotoxic effects in their erythrocytes and affect their egg morphometric characteristics and the composition of related compartments. Additionally, this study aimed to evaluate whether the quality of energetic reserves for embryo development (fatty acids in yolk's polar and neutral lipids) is influenced by the contamination status of their predecessors. Results revealed correlations between Cu and Hg levels and increased "lobed" erythrocytes, while As and Cu negatively influenced shell thickness. In terms of energy reserves, both polar and neutral lipid fractions contained primarily saturated and monounsaturated fatty acids, with prevalent 18:1n-9, 18:0, 16:0, 14:0, and 12:0 fatty acids in yolk samples. The yolk polar fraction was more susceptible to contaminant levels in female sea turtles, showing consistent negative correlations between pollution load index and essential n3 fatty acids, including linolenic, eicosatrienoic, eicosapentaenoic, and docosapentaenoic acids, crucial for embryonic development. These metals accumulation, coupled with the reduced availability of these key fatty acids, may disrupt the eicosanoid and other important pathways, affecting reproductive development. This study reveals a negative correlation between metal contamination in female sea turtles' blood and egg lipid reserves, raising concerns about embryonic development and the species' future generations.
Assuntos
Desenvolvimento Embrionário , Óvulo , Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/embriologia , Feminino , Poluentes Químicos da Água/análise , Desenvolvimento Embrionário/efeitos dos fármacos , Óvulo/química , Monitoramento Ambiental , MetaisRESUMO
Brachionus plicatilis is a cosmopolitan rotifer used as a model organism in several research areas and as live food in aquaculture. Being a species complex, responses to stressors vary even among strains of the same species and, thus, the responses of one species are not representative of the whole complex. This study aimed to address the effects of extreme salinity ranges, and different concentrations of hydrogen peroxide, copper, cadmium, and chloramphenicol, in two strains of B. koreanus (MRS10 and IBA3) from B. plicatilis species complex, by assessing effects on their survival and swimming capacity. Neonates (0-4 h old) were exposed to the stressors in 48 well-microplates, for 24 and 6 h, to evaluate lethal and behavioural effects, respectively. Tested conditions of chloramphenicol did not show any effects on rotifers. The behavioural endpoint showed to be particularly sensitive to assess the effects of high salinity, hydrogen peroxide, and copper sulfate, as swimming capacity impairment was observed for both strains in the lowest concentrations used in lethal tests. Overall, results showed that IBA3 was more tolerant to the majority of stressors, comparing to MRS10, which may be due to differences in physiological characteristics, highlighting the importance of performing multiclonal experiments. Also, swimming capacity inhibition proved to be a good alternative to the classical lethality tests, being sensitive to lower concentrations and with shorter exposure periods.
Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Humanos , Recém-Nascido , Natação , Peróxido de Hidrogênio/farmacologia , Estresse Fisiológico , Poluentes Químicos da Água/farmacologiaRESUMO
Anthropogenic climate change, particularly seawater warming, is expected to drive quick shifts in marine species distribution transforming coastal communities. These shifts in distribution will be particularly noticeable in biogeographical transition zones. The continental Portuguese coast stretches from north to south along 900 km. Despite this short spatial scale, the strong physical gradient intensified by the Iberian upwelling creates a transition zone where seaweed species from boreal and Lusitanian-Mediterranean origin coexist. On the northern coast, kelp marine forests thrive in the cold, nutrient-rich oceanic waters. In the south, communities resemble Mediterranean-type seaweed assemblages and are dominated by turfs. Recent evidence suggests that in these coastal areas, marine intertidal species are shifting their distribution edges as a result of rising seawater temperatures. Taking advantage of previous abundance data collected in 2012 from subtidal seaweed communities, a new sampling program was carried out in the same regions in 2018 to assess recent changes. The results confirmed the latitudinal gradient in macroalgal assemblages. More importantly we found significant structural and functional changes in a short period of six years, with regional increases of abundance of warm-affinity species, small seaweeds like turfs. Species richness, diversity, and biomass increase, all accompanied by an increase of community temperature index (CTI). Our findings suggest that subtidal seaweed communities in this transitional area have undergone major changes within a few years. Evidence of "fast tropicalization" of the subtidal communities of the Portuguese coast are strong indication of the effects of anthropic climate change over coastal assemblages.
Assuntos
Kelp , Alga Marinha , Ecossistema , Biomassa , TemperaturaRESUMO
Fatty acids are energy sources, and their profiles are used as biomarkers of metabolic status and physiological changes in fish. Within this context, the main aim of this study was to identify the fatty acids that best discriminate the reproductive status of male and female farmed brown trout. The fatty acid composition in liver and plasma samples from the adults of both sexes was monitored along four distinct reproductive stages, namely the spawning capable (December), regressing (March), regenerating (July), and developing (November) stages. Irrespective of the sex and stage, the most representative fatty acids were palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1 n-9), arachidonic acid (20:4 n-6), eicosapentaenoic acid (EPA, 20:5 n-3), and docosahexaenoic acid (DHA, 22:6 n-3). There were no significant sex differences in fatty acid classes in the liver and plasma. Despite this, there were several changes in individual fatty acid levels between the sexes. In the liver, both males and females showed high monounsaturated fatty acid and low polyunsaturated fatty acid (PUFA) levels during the regressing and regenerating stages. At spawning capable and developing stages, a reverse profile was noted. The plasma profiles were mainly influenced by changes in saturated fatty acids and PUFAs in males and by PUFA in females. Based on the most representative fatty acids, four patterns were established for female plasma samples, one for each reproductive stage. This scenario suggests that female plasma samples are promising for the discrimination of gonadal reproductive status, and this potential can be further explored in aquaculture and environmental monitoring studies.
RESUMO
Chemical pollution is a major threat to marine ecosystems, and top predators such as most shark species are extremely vulnerable to being exposed and accumulating contaminants such as metals and persistent organic pollutants (POPs). This work aimed to study the degree, composition, and the sources of contamination in the blue shark (Prionace glauca) inhabiting the Northeast Atlantic, as well as the potential risk faced by human consumers. A total of 60 sharks were sampled in situ aboard fishing vessels, and the concentrations of a set of metals and POPs were analysed in various tissues and complemented with stable isotope analyses. High levels of contaminants were found in most sharks sampled. The concentrations of most metals were higher in the muscle when compared with the liver. Regarding the dangers to consumers posed by the concentrations of arsenic (As), mercury (Hg), and lead (Pb), over 75% of the sharks presented muscle concentrations of at least one contaminant above the legal limits for human consumption, and a risk assessment determined that consumption of meat of these sharks exceeding 0.07 Kg per week could potentially expose human consumers to dangerous amounts of methylmercury (MeHg). Additionally, the assessment of single contaminants may lead to an underestimation of the risk for the human health. Finally, the overall accumulation of contaminants seems to be mostly influenced by the sharks' geographical distribution, rather than sex, size, or trophic level of their prey.
Assuntos
Arsênio , Mercúrio , Tubarões , Poluentes Químicos da Água , Humanos , Animais , Poluentes Químicos da Água/análise , Ecossistema , Mercúrio/análise , Arsênio/análise , MetaisRESUMO
Fungal infections cause losses amounting to between 20 and 25% of the fruit industry's total outcome, with an escalating impact on agriculture in the last decades. As seaweeds have long demonstrated relevant antimicrobial properties against a wide variety of microorganisms, extracts from Asparagopsis armata, Codium sp., Fucus vesiculosus, and Sargassum muticum were used to find sustainable, ecofriendly, and safe solutions against Rocha pear postharvest fungal infections. Alternaria alternata, Botrytis cinerea, Fusarium oxysporum, and Penicillium expansum mycelial growth and spore germination inhibition activities were tested in vitro with five different extracts of each seaweed (n-hexane, ethyl acetate, aqueous, ethanolic, and hydroethanolic). An in vivo assay was then performed using the aqueous extracts against B. cinerea and F. oxysporum in Rocha pear. The n-hexane, ethyl acetate, and ethanolic extracts from A. armata showed the best in vitro inhibitory activity against B. cinerea, F. oxysporum, and P. expansum, and promising in vivo results against B. cinerea using S. muticum aqueous extract were also found. The present work highlights the contribution of seaweeds to tackle agricultural problems, namely postharvest phytopathogenic fungal diseases, contributing to a greener and more sustainable bioeconomy from the sea to the farm.
RESUMO
The growth of human populations has been driving an unprecedent and widespread increase in marine traffic, posing a real threat to marine biodiversity. Even though we are now aware of the negative effects of shipping noise exposure on fish, information about the impact on their early life stages continues to lack. Meagre (Argyrosomus regius) is a vocal fish that uses estuaries with high levels of anthropogenic noise pollution as both breeding areas and nurseries. Here, the effects of boat noise exposure on the development and survival of meagre larvae were studied. Embryos and larvae were exposed to either noise (boat noise playback) or control treatments (coils producing a similar electric field to the speakers) and hatching rate, survival rate, morphometric traits and stress-related biomarkers, at hatching and at 2 days-post-hatching (dph) were analyzed. Results showed no conclusive effects of the impact of boat noise playback, even though there was an increased lipid droplet consumption and a decrease in body depth at 2dph larvae under this stressor. The assessment of oxidative stress and energy metabolism-related biomarkers at hatching showed a marginal decrease in superoxide dismutase (SOD) activity and no changes in DNA damage or electron transport system activity (ETS), although it cannot be disregarded that those effects could only be visible at later stages of larval development. Whether these morphological and developmental results have implications in later stages remains to be investigated. Further studies with longer exposure and wild meagre could help deepen this knowledge and provide a better understanding of how anthropogenic noise can impact meagre early stages.
Assuntos
Ruído , Perciformes , Animais , Humanos , Ruído/efeitos adversos , Perciformes/genética , Peixes , Larva , BiomarcadoresRESUMO
Top predators such as most shark species are extremely vulnerable to amassing high concentrations of contaminants, but not much is known about the effects that the contaminant body burden imparts on these animals. Species like the blue shark (Prionace glauca) are very relevant in this regard, as they have high ecological and socioeconomic value, and have the potential to act as bioindicators of pollution. This work aimed to assess if differences in contaminant body burden found in blue sharks from the Northeast Atlantic would translate into differences in stress responses. Biochemical responses related to detoxification and oxidative stress, and histological alterations were assessed in the liver and gills of 60 blue sharks previously found to have zone-related contamination differences. Similar zone-related differences were found in biomarker responses, with the sharks from the most contaminated zone exhibiting more pronounced responses. Additionally, strong positive correlations were found between contaminants (i.e., As, PCBs, and PBDEs) and relevant biomarkers (e.g., damaged DNA and protective histological alterations). The present results are indicative of the potential that this species and these tools have to be used to monitor pollution in different areas of the Atlantic.
Assuntos
Biomarcadores Ambientais , Tubarões , Animais , Oceano AtlânticoRESUMO
Here, mercury kinetics and behavioural effects in the midge larvae under a water-only exposure were assessed. Uptake and elimination of waterborne mercury were described by using a one-compartment kinetic model. Results show that midges were able to readily accumulate the heavy metal (BCF = 450), presenting a fast uptake, up to 13.1 µg Hg g of animal(-1) at the end of the exposure period. Elimination was slow, with c.a. 39 % of the mercury in larvae being depurated after 48 h in clean medium. Behaviour did not present differences upon exposure or elimination, but a trend to increase ventilation was noticed during the exposure period.
Assuntos
Chironomidae/efeitos dos fármacos , Monitoramento Ambiental/métodos , Mercúrio/farmacocinética , Poluentes Químicos da Água/análise , Animais , Chironomidae/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Poluentes Químicos da Água/efeitos adversosRESUMO
Effects assessed at higher levels of biological organization (populations and communities) are the consequence of the sum of effects on individuals, which usually result from impacts at cellular and molecular levels. Given this rationale, these lower levels of biological organization are more responsive at an early stage, making them potential resources that can be used as early warning endpoints to address environmental stress. In this way, the information concerning effects at the molecular level of biological organization (e.g., transcripts, proteins, or metabolites) allows for an early assessment of future ecosystem problems, which may eventually enable a timely intervention before the impacts become visible and irreversible. However, despite providing an early warning and a better understanding of the toxicity mechanisms, enabling the protection of biological integrity, the most significant setback is that these endpoints may fail to foresee later impacts on the environment due to the ecosystem resilience or a weak link to the effects in the following level of biological organization, making these tools simply too conservative for stakeholders' interests. Hence, an approach targeting lower levels of biological organization will greatly benefit from addressing potential effects at higher levels. This can be achieved by establishing a link in biological organization, where the effects assessed at the lower end of biological organization are linked with the high probability of causing an effect at the other end, inducing changes in populations and communities, and eventually altering ecosystems in the future.