Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(9): 2332-2347.e16, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33761326

RESUMO

The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.


Assuntos
Antígenos Virais/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/virologia , Cricetinae , Mapeamento de Epitopos , Variação Genética , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Domínios Proteicos , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/ultraestrutura
2.
Nature ; 621(7979): 592-601, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648855

RESUMO

Currently circulating SARS-CoV-2 variants have acquired convergent mutations at hot spots in the receptor-binding domain1 (RBD) of the spike protein. The effects of these mutations on viral infection and transmission and the efficacy of vaccines and therapies remains poorly understood. Here we demonstrate that recently emerged BQ.1.1 and XBB.1.5 variants bind host ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1, XBB.1 and BN.1 RBDs bound to the fragment antigen-binding region of the S309 antibody (the parent antibody for sotrovimab) and human ACE2 explain the preservation of antibody binding through conformational selection, altered ACE2 recognition and immune evasion. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1 and hamsters challenged with XBB.1.5. Vaccine-elicited human plasma antibodies cross-react with and trigger effector functions against current Omicron variants, despite a reduced neutralizing activity, suggesting a mechanism of protection against disease, exemplified by S309. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring the role of persistent immune imprinting.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Reações Cruzadas , Evasão da Resposta Imune , Fusão de Membrana , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Mutação , Células B de Memória/imunologia , Vacinas contra COVID-19/imunologia
3.
Nature ; 598(7880): 342-347, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464958

RESUMO

SARS-CoV-2 infection-which involves both cell attachment and membrane fusion-relies on the angiotensin-converting enzyme 2 (ACE2) receptor, which is paradoxically found at low levels in the respiratory tract1-3, suggesting that there may be additional mechanisms facilitating infection. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding immunoglobulin-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the amino-terminal domain or to the conserved site at the base of the receptor-binding domain, while poorly neutralizing infection of ACE2-overexpressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the receptor binding motif, while potently neutralizing infection of ACE2-overexpressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike, promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Lectinas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Fusão Celular , Linhagem Celular , Cricetinae , Feminino , Humanos , Lectinas/imunologia , Lectinas Tipo C/metabolismo , Fusão de Membrana , Receptores de Superfície Celular/metabolismo , SARS-CoV-2/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Nature ; 597(7874): 103-108, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280951

RESUMO

The recent emergence of SARS-CoV-2 variants of concern1-10 and the recurrent spillovers of coronaviruses11,12 into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Anticorpos Amplamente Neutralizantes/química , COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Mesocricetus/imunologia , Mesocricetus/virologia , Mutação , Testes de Neutralização , SARS-CoV-2/química , SARS-CoV-2/genética , Zoonoses Virais/imunologia , Zoonoses Virais/prevenção & controle , Zoonoses Virais/virologia
5.
Nature ; 597(7874): 97-102, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261126

RESUMO

An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse sarbecoviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E128) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Evasão da Resposta Imune , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/química , COVID-19/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Linhagem Celular , Cricetinae , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Masculino , Mesocricetus , Pessoa de Meia-Idade , Modelos Moleculares , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinologia , Tratamento Farmacológico da COVID-19
6.
J Hepatol ; 79(5): 1129-1138, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37459920

RESUMO

BACKGROUND & AIMS: Chronic hepatitis B is a global public health problem, and coinfection with hepatitis delta virus (HDV) worsens disease outcome. Here, we describe a hepatitis B virus (HBV) surface antigen (HBsAg)-targeting monoclonal antibody (mAb) with the potential to treat chronic hepatitis B and chronic hepatitis D. METHODS: HBsAg-specific mAbs were isolated from memory B cells of HBV vaccinated individuals. In vitro neutralization was determined against HBV and HDV enveloped with HBsAg representing eight HBV genotypes. Human liver-chimeric mice were treated twice weekly with a candidate mAb starting 3 weeks post HBV inoculation (spreading phase) or during stable HBV or HBV/HDV coinfection (chronic phase). RESULTS: From a panel of human anti-HBs mAbs, VIR-3434 was selected and engineered for pre-clinical development. VIR-3434 targets a conserved, conformational epitope within the antigenic loop of HBsAg and neutralized HBV and HDV infection with higher potency than hepatitis B immunoglobulins in vitro. Neutralization was pan-genotypic against strains representative of HBV genotypes A-H. In the spreading phase of HBV infection in human liver-chimeric mice, a parental mAb of VIR-3434 (HBC34) prevented HBV dissemination and the increase in intrahepatic HBV RNA and covalently closed circular DNA. In the chronic phase of HBV infection or co-infection with HDV, HBC34 treatment decreased circulating HBsAg by >1 log and HDV RNA by >2 logs. CONCLUSIONS: The potently neutralizing anti-HBs mAb VIR-3434 reduces circulating HBsAg and HBV/HDV viremia in human liver-chimeric mice. VIR-3434 is currently in clinical development for treatment of patients with chronic hepatitis B or D. IMPACT AND IMPLICATIONS: Chronic infection with hepatitis B virus and co-infection with hepatitis D virus place approximately 290 million individuals worldwide at risk of severe liver disease and cancer. Available treatments result in low rates of functional cure or require lifelong therapy that does not eliminate the risk of liver disease. We isolated and characterized a potent human antibody that neutralizes hepatitis B and D viruses and reduces infection in a mouse model. This antibody could provide a new treatment for patients with chronic hepatitis B and D.

7.
J Hepatol ; 79(4): 924-932, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290591

RESUMO

BACKGROUND & AIMS: Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts. METHODS: We report on: i) the safety of single doses of VIR-2218 (modified from ALN-HBV by enhanced stabilization chemistry plus technology to reduce off-target, seed-mediated binding while maintaining on-target antiviral activity) and ALN-HBV in humanized mice; ii) a cross-study comparison of the safety of single doses of VIR-2218 and ALN-HBV in healthy human volunteers (n = 24 and n = 49, respectively); and iii) the antiviral activity of two doses of 20, 50, 100, 200 mg of VIR-2218 (total n = 24) vs. placebo (n = 8), given 4 weeks apart, in participants with cHBV infection. RESULTS: In humanized mice, alanine aminotransferase (ALT) levels were markedly lower following administration of VIR-2218 compared with ALN-HBV. In healthy volunteers, post-treatment ALT elevations occurred in 28% of participants receiving ALN-HBV compared with none in those receiving VIR-2218. In participants with cHBV infection, VIR-2218 was associated with dose-dependent reductions in hepatitis B surface antigen (HBsAg). The greatest mean reduction of HBsAg at Week 20 in participants receiving 200 mg was 1.65 log IU/ml. The HBsAg reduction was maintained at 0.87 log IU/ml at Week 48. No participants had serum HBsAg loss or hepatitis B surface antibody seroconversion. CONCLUSIONS: VIR-2218 demonstrated an encouraging hepatic safety profile in preclinical and clinical studies as well as dose-dependent HBsAg reductions in patients with cHBV infection. These data support future studies with VIR-2218 as part of combination regimens with a goal of HBV functional cure. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT02826018 and NCT03672188. IMPACT AND IMPLICATIONS: A significant unmet need exists for therapies for chronic HBV (cHBV) infection that achieve functional cure. We report clinical and non-clinical data on two investigational small-interfering RNAs that target HBx, ALN-HBV and VIR-2218, demonstrating that incorporation of enhanced stabilization chemistry plus technology in VIR-2218 reduces its propensity to cause ALT elevations relative to its parent compound, ALN-HBV. We also show that VIR-2218 reduces hepatitis B surface antigen levels in a dose-dependent manner in participants with cHBV infection. These studies support the continued development of VIR-2218 as part of therapeutic regimens for cHBV infection, with the goal of a functional cure, and are important for HBV researchers and physicians.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Animais , Camundongos , Hepatite B Crônica/tratamento farmacológico , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Terapêutica com RNAi , Ensaios Clínicos Controlados Aleatórios como Assunto , Antivirais , DNA Viral , Antígenos E da Hepatite B , Hepatite B/tratamento farmacológico
8.
J Hepatol ; 77(4): 957-966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636579

RESUMO

BACKGROUND & AIMS: Besides HBV-dependent de novo infection, cell division-mediated spread contributes to HDV persistence and dampens the effect of antivirals that abrogate de novo infection. Nonetheless, the combination of these antivirals with interferons (IFNs) showed strong synergism in recent clinical trials, implying a complementary mode-of-action of IFNs. Therefore, we investigated the effect of IFN response on cell division-mediated HDV spread. METHODS: Cells infected with HDV were passaged to undergo cell division. The effect of the IFN response was evaluated by blocking HDV-induced IFN activation, by applying different IFN treatment regimens, and by adjusting HDV infection doses. RESULTS: Cell division-mediated HDV spread was highly efficient following infection of HuH7NTCP cells (defective in IFN production), but profoundly restricted in infected IFN-competent HepaRGNTCP cells. Treatment with IFN-α/-λ1 inhibited HDV spread in dividing HuH7NTCP cells, but exhibited a marginal effect on HDV replication in resting cells. Blocking the HDV-induced IFN response with the JAK1/2 inhibitor ruxolitinib or knocking down MDA5 augmented HDV spread in dividing HepaRGNTCP cells. The virus-induced IFN response also destabilized HDV RNA in dividing cells. Moreover, the effect of exogenous IFNs on cell division-mediated HDV spread was more pronounced at low multiplicities of infection with weak virus-induced IFN responses. CONCLUSIONS: Both HDV-induced IFN response and exogenous IFN treatment suppress cell division-mediated HDV spread, presumably through acceleration of HDV RNA decay. Our findings demonstrate a novel mode-of-action of IFN, explain the more pronounced effect of IFN therapy in patients with lower HDV serum RNA levels, and provide insights for the development of combination therapies. LAY SUMMARY: Chronic hepatitis D is a major health problem. The causative pathogen hepatitis D virus (HDV) can propagate through viral particle-mediated infection and the division of infected cells. Although viral particle-dependent infection can be blocked by recently developed drugs, therapies addressing the cell division route have not been reported. Taking advantage of relevant cell culture models, we demonstrate that the widely used immune modulator interferon can efficiently suppress HDV spread through cell division. This work unveils a new function of interferon and sheds light on potentially curative combination therapies.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Antivirais/farmacologia , Antivirais/uso terapêutico , Divisão Celular , Vírus da Hepatite B/genética , Hepatite D/tratamento farmacológico , Vírus Delta da Hepatite/genética , Humanos , Interferon-alfa/farmacologia , Interferons , RNA , Replicação Viral
9.
J Hepatol ; 75(2): 311-323, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33845061

RESUMO

BACKGROUND & AIMS: Chronic HDV infections cause the most severe form of viral hepatitis. HDV requires HBV envelope proteins for hepatocyte entry, particle assembly and release. Eight HDV and 8 HBV genotypes have been identified. However, there are limited data on the replication competence of different genotypes and the effect that different HBV envelopes have on virion assembly and infectivity. METHODS: We subcloned complementary DNAs (cDNAs) of all HDV and HBV genotypes and systematically studied HDV replication, assembly and infectivity using northern blot, western blot, reverse-transcription quantitative PCR, and in-cell ELISA. RESULTS: The 8 HDV cDNA clones initiated HDV replication with noticeable differences regarding replication efficacy. The 8 HBV-HBsAg-encoding constructs all supported secretion of subviral particles, however variations in envelope protein stoichiometry and secretion efficacy were observed. Co-transfection of all HDV/HBV combinations supported particle assembly, however, the respective pseudo-typed HDVs differed with respect to assembly kinetics. The most productive combinations did not correlate with the natural geographic distribution, arguing against an evolutionary adaptation of HDV ribonucleoprotein complexes to HBV envelopes. All HDVs elicited robust and comparable innate immune responses. HBV envelope-dependent differences in the activity of the EMA-approved entry inhibitor bulevirtide were observed, however efficient inhibition could be achieved at therapeutically applied doses. Lonafarnib also showed pan-genotypic activity. CONCLUSIONS: HDVs from different genotypes replicate with variable efficacies. Variations in HDV genomes and HBV envelope proteins are both major determinants of HDV egress and entry efficacy, and consequently assembly inhibition by lonafarnib or entry inhibition by bulevirtide. These differences possibly influence HDV pathogenicity, immune responses and the efficacy of novel drug regimens. LAY SUMMARY: HDV requires the envelope protein of HBV for assembly and to infect human cells. We investigated the ability of different HDV genotypes to infect cells and replicate. We also assessed the effect that envelope proteins from different HBV genotypes had on HDV infectivity and replication. Herein, we confirmed that genotypic differences in HDV and HBV envelope proteins are major determinants of HDV assembly, de novo cell entry and consequently the efficacy of novel antivirals.


Assuntos
Genótipo , Vírus da Hepatite B/enzimologia , Vírus Delta da Hepatite/genética , Vírus da Hepatite B/patogenicidade , Vírus Delta da Hepatite/imunologia , Humanos
10.
J Clin Microbiol ; 59(10): e0052721, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34288726

RESUMO

Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Chlorocebus aethiops , Células HEK293 , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
11.
Gastroenterology ; 154(6): 1791-1804.e22, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410097

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS: PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS: HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS: In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.


Assuntos
Antivirais/farmacologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Hepatócitos/imunologia , Imunidade Inata/imunologia , Interferons/farmacologia , Coinfecção/tratamento farmacológico , Coinfecção/imunologia , Coinfecção/virologia , DNA Viral/efeitos dos fármacos , DNA Viral/imunologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Fígado/citologia , Fígado/imunologia , Fígado/virologia , Replicação Viral/efeitos dos fármacos
12.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232183

RESUMO

Chronic infection with the human hepatitis B virus (HBV) is a major health problem. Virus persistence requires the establishment and maintenance of covalently closed circular DNA (cccDNA), the episomal virus template in the nucleus of infected hepatocytes. Compared to replicative DNA intermediates (relaxed circular DNA [rcDNA]), copy numbers of cccDNA in infected hepatocytes are low. Accordingly, accurate analyses of cccDNA require enrichment of nuclear fractions and Southern blotting or selective quantitative PCR (qPCR) methods allowing discrimination of cccDNA and rcDNA. In this report, we analyzed cccDNA-specific primer pairs for their ability to amplify cccDNA selectively. Using mixtures of defined forms of HBV and genomic DNA, we determined the potential of different nucleases for targeted digestion of the open/relaxed circular DNA forms in the absence and presence of genomic DNA without affecting cccDNA. We found that the combination of T5 exonuclease with a primer set amplifying an approximately 1-kb fragment permits reliable quantification of cccDNA without the requirement of prior nucleus enrichment or Hirt extraction. We tested this method in four different in vitro infection systems and quantified cccDNA copy numbers at increasing multiplicities of inoculated genome equivalents. We further analyzed the kinetics of cccDNA formation and the effect of drugs (interferon, entry inhibitors, and capsid inhibitors) on cccDNA. Our method allows reliable cccDNA quantification at early stages of infection in the presence of a high excess of input virus and replicative intermediates and is thereby suitable for drug screening and investigation of cccDNA formation and maintenance.IMPORTANCE cccDNA elimination is a major goal in future curative regimens for chronic HBV patients. However, PCR-based assays for cccDNA quantification show a principally constrained specificity when high levels of input virus or replicative intermediates are present. Here, we characterized T5 exonuclease as a suitable enzyme for medium-throughput in vitro assays that preserves cccDNA but efficiently removes rcDNA prior to PCR-based quantification. We compared T5 exonuclease with the previously described exonuclease III and showed that both nucleases are suitable for reliable quantification of cccDNA by PCR. We substantiated the applicability of our method through examination of early cccDNA formation and stable accumulation in several in vitro infection models and analyzed cccDNA stability after administration of anti-HBV drugs. Our results support the use of T5 exonuclease for fast and convenient rcDNA removal, especially for early cccDNA quantification and rapid drug testing in in vitro studies.


Assuntos
Antivirais/farmacologia , DNA Circular/análise , DNA Viral/metabolismo , Exonucleases/metabolismo , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Reação em Cadeia da Polimerase/métodos , Replicação do DNA , DNA Circular/genética , DNA Circular/metabolismo , DNA Viral/genética , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Hidrólise , Replicação Viral
13.
Hepatology ; 66(3): 703-716, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28195359

RESUMO

Infections with the human hepatitis B virus (HBV) and hepatitis D virus (HDV) depend on species-specific host factors like the receptor human sodium taurocholate cotransporting polypeptide (hNTCP). Complementation of mouse hepatocytes with hNTCP confers susceptibility to HDV but not HBV, indicating the requirement of additional HBV-specific factors. As an essential premise toward the establishment of an HBV-susceptible animal model, we investigated the role of hNTCP as a limiting factor of hepatocytes in commonly used laboratory animals. Primary hepatocytes from mice, rats, dogs, pigs, rhesus macaques, and cynomolgus macaques were transduced with adeno-associated viral vectors encoding hNTCP and subsequently infected with HBV. Cells were analyzed for Myrcludex B binding, taurocholate uptake, HBV covalently closed circular DNA formation, and expression of all HBV markers. Sodium taurocholate cotransporting polypeptide (Ntcp) from the respective species was cloned and analyzed for HBV and HDV receptor activity in a permissive hepatoma cell line. Expression of hNTCP in mouse, rat, and dog hepatocytes permits HDV infection but does not allow establishment of HBV infection. Contrarily, hepatocytes from cynomolgus macaques, rhesus macaques, and pigs became fully susceptible to HBV upon hNTCP expression with efficiencies comparable to human hepatocytes. Analysis of cloned Ntcp from all species revealed a pronounced role of the human homologue to support HBV and HDV infection. CONCLUSION: Ntcp is the key host factor limiting HBV infection in cynomolgus and rhesus macaques and in pigs. In rodents (mouse, rat) and dogs, transfer of hNTCP supports viral entry but additional host factors are required for the establishment of HBV infection. This finding paves the way for the development of macaques and pigs as immunocompetent animal models to study HBV infection in vivo, immunological responses against the virus and viral pathogenesis. (Hepatology 2017;66:703-716).


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Hepatite B/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Ácido Taurocólico/metabolismo , Replicação Viral/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Hepatite B/genética , Hepatite B/fisiopatologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores Virais/metabolismo , Transdução de Sinais , Especificidade da Espécie , Suínos , Transfecção
14.
J Virol ; 90(9): 4827-4831, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26865711

RESUMO

Hepatitis B virus (HBV) enters hepatocytes via its receptor, human sodium taurocholate cotransporting polypeptide (hNTCP). So far, HBV infection has been achieved only in human hepatic cells reconstituted with hNTCP and not in cells of mouse origin. Here, the first mouse liver cell line (AML12) which gains susceptibility to HBV upon hNTCP expression is described. Thus, HBV infection of receptor-expressing mouse hepatocytes does not principally require a human cofactor but can be triggered by endogenous murine determinants.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatite B/metabolismo , Hepatite B/virologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Linhagem Celular , Suscetibilidade a Doenças , Expressão Gênica , Hepatite B/genética , Vírus Delta da Hepatite/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Internalização do Vírus
15.
J Hepatol ; 64(3): 556-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576481

RESUMO

BACKGROUND & AIMS: Hepatitis B virus (HBV) is a major human pathogen restricted to hepatocytes. Expression of the specific receptor human sodium taurocholate cotransporting polypeptide (hNTCP) in mouse hepatocytes renders them susceptible to hepatitis delta virus (HDV), a satellite of HBV; however, HBV remains restricted at an early stage of replication. This study aims at clarifying whether this restriction is caused by the lack of a dependency factor or the activity of a restriction factor. METHODS: Six hNTCP-expressing mouse and human cell lines were generated and functionally characterized. By fusion with replication-supporting but non-infectable HepG2 cells, we analysed the ability of these heterokaryonic cells to fully support HBV replication by HBcAg expression and HBsAg/HBeAg secretion. RESULTS: While hNTCP expression in three mouse cell lines and the non-hepatic human HeLa cells conferred susceptibility to HDV, HBV replication was still restricted. Upon fusion of refractive cells to HepG2 cells, all heterokaryonic cells supported receptor-mediated infection with HBV. hNTCP was provided by the mouse cells and replication competence came from the HepG2 cell line. Transfection of a covalently closed circular DNA (cccDNA)-like molecule into non-susceptible cells promoted gene expression, indicating that the limiting step is upstream of cccDNA formation. CONCLUSIONS: In addition to the expression of hNTCP, establishment of HBV infection in mouse and non-hepatocytic human cell lines requires supplementation with a dependency factor and is not limited by a restriction factor. This result opens new avenues for the development of a fully permissive immunocompetent HBV mouse model.


Assuntos
Vírus da Hepatite B/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Simportadores/fisiologia , Replicação Viral , Animais , Linhagem Celular , Células Hep G2 , Vírus Delta da Hepatite/fisiologia , Hepatócitos/virologia , Humanos , Camundongos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética
16.
J Hepatol ; 65(3): 490-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27132170

RESUMO

BACKGROUND & AIMS: The therapeutic option for patients with chronic hepatitis delta virus infection (CHD) is limited to interferon alpha with rare curative outcome. Myrcludex B is a first-in-class entry inhibitor inactivating the hepatitis B virus (HBV) and hepatitis D virus (HDV) receptor sodium taurocholate co-transporting polypeptide. We report the interim results of a pilot trial on chronically infected HDV patients treated with myrcludex B, or pegylated interferon alpha (PegIFNα-2a) or their combination. METHODS: Twenty-four patients with CHD infection were equally randomized (1:1:1) to receive myrcludex B, or PegIFNα-2a or their combination. Patients were evaluated for virological and biochemical response and tolerability of the study drugs at weeks 12 and 24. RESULTS: Myrcludex B was well tolerated and no serious adverse event occurred. Although hepatitis B surface antigen levels remained unchanged, HDV RNA significantly declined at week 24 in all cohorts. HDV RNA became negative in two patients each in the Myrcludex B and PegIFNα-2a cohorts, and in five patients of the Myrcludex B+PegIFNα-2a cohort. ALT decreased significantly in the Myrcludex B cohort (six of eight patients), and HBV DNA was significantly reduced at week 24 in the Myrcludex B+PegIFNα-2a cohort. Virus kinetic modeling suggested a strong synergistic effect of myrcludex B and PegIFNα-2a on both HDV and HBV. CONCLUSIONS: Myrcludex B showed a strong effect on HDV RNA serum levels and induced ALT normalization under monotherapy. Synergistic antiviral effects on HDV RNA and HBV DNA in the Myr-IFN cohort indicated a benefit of the combination of entry inhibition with PegIFNα-2a to treat CHD patients. LAY SUMMARY: Myrcludex B is a new drug to treat hepatitis B and D infection. After 24weeks of treatment with myrcludex B and/or pegylated interferon α-2a, HDV R NA, a relevant marker for hepatitis D infection, decreased in all patients with chronic hepatitis B and D. Two of eight patients which received either myrcludex B or pegylated interferon α-2a, became negative for HDV RNA, and five of seven patients who received both drugs at the same time became negative. The drug was well tolerated.


Assuntos
Hepatite B , Hepatite D , Vírus da Hepatite B , Vírus Delta da Hepatite , Humanos , Lipopeptídeos
17.
Hepatology ; 62(1): 207-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25641256

RESUMO

UNLABELLED: The Na(+) -taurocholate cotransporting polypeptide (NTCP) mediates uptake of conjugated bile acids (BAs) and is localized at the basolateral membrane of hepatocytes. It has recently been recognized as the receptor mediating hepatocyte-specific entry of hepatitis B virus and hepatitis delta virus. Myrcludex B, a peptide inhibitor of hepatitis B virus entry, is assumed to specifically target NTCP. Here, we investigated BA transport and Myrcludex B binding in the first Slc10a1-knockout mouse model (Slc10a1 encodes NTCP). Primary Slc10a1(-/-) hepatocytes showed absence of sodium-dependent taurocholic acid uptake, whereas sodium-independent taurocholic acid uptake was unchanged. In vivo, this was manifested as a decreased serum BA clearance in all knockout mice. In a subset of mice, NTCP deficiency resulted in markedly elevated total serum BA concentrations, mainly composed of conjugated BAs. The hypercholanemic phenotype was rapidly triggered by a diet supplemented with ursodeoxycholic acid. Biliary BA output remained intact, while fecal BA excretion was reduced in hypercholanemic Slc10a1(-/-) mice, explained by increased Asbt and Ostα/ß expression. These mice further showed reduced Asbt expression in the kidney and increased renal BA excretion. Hepatic uptake of conjugated BAs was potentially affected by down-regulation of OATP1A1 and up-regulation of OATP1A4. Furthermore, sodium-dependent taurocholic acid uptake was inhibited by Myrcludex B in wild-type hepatocytes, while Slc10a1(-/-) hepatocytes were insensitive to Myrcludex B. Finally, positron emission tomography showed a complete abrogation of hepatic binding of labeled Myrcludex B in Slc10a1(-/-) mice. CONCLUSION: The Slc10a1-knockout mouse model supports the central role of NTCP in hepatic uptake of conjugated BAs and hepatitis B virus preS1/Myrcludex B binding in vivo; the NTCP-independent hepatic BA uptake machinery maintains a (slower) enterohepatic circulation of BAs, although it is occasionally insufficient to clear BAs from the circulation.


Assuntos
Vírus da Hepatite B/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/sangue , Proteínas do Envelope Viral/metabolismo , Animais , Bile/química , Fezes/química , Feminino , Lipopeptídeos , Masculino , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fenótipo , Simportadores/genética , Ácido Taurocólico/urina , Ácido Ursodesoxicólico
18.
Gastroenterology ; 146(4): 1070-83, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24361467

RESUMO

BACKGROUND & AIMS: Hepatitis B and D viruses (HBV and HDV) are human pathogens with restricted host ranges and high selectivity for hepatocytes; the HBV L-envelope protein interacts specifically with a receptor on these cells. We aimed to identify this receptor and analyze whether it is the recently described sodium-taurocholate co-transporter polypeptide (NTCP), encoded by the SLC10A1 gene. METHODS: To identify receptor candidates, we compared gene expression patterns between differentiated HepaRG cells, which express the receptor, and naïve cells, which do not. Receptor candidates were evaluated by small hairpin RNA silencing in HepaRG cells; the ability of receptor expression to confer binding and infection were tested in transduced hepatoma cell lines. We used interspecies domain swapping to identify motifs for receptor-mediated host discrimination of HBV and HDV binding and infection. RESULTS: Bioinformatic analyses of comparative expression arrays confirmed that NTCP, which was previously identified through a biochemical approach is a bona fide receptor for HBV and HDV. NTCPs from rat, mouse, and human bound Myrcludex B, a peptide ligand derived from the HBV L-protein. Myrcludex B blocked NTCP transport of bile salts; small hairpin RNA-mediated knockdown of NTCP in HepaRG cells prevented their infection by HBV or HDV. Expression of human but not mouse NTCP in HepG2 and HuH7 cells conferred a limited cell-type-related and virus-dependent susceptibility to infection; these limitations were overcome when cells were cultured with dimethyl sulfoxide. We identified 2 short-sequence motifs in human NTCP that were required for species-specific binding and infection by HBV and HDV. CONCLUSIONS: Human NTCP is a specific receptor for HBV and HDV. NTCP-expressing cell lines can be efficiently infected with these viruses, and might be used in basic research and high-throughput screening studies. Mapping of motifs in NTCPs have increased our understanding of the species specificities of HBV and HDV, and could lead to small animal models for studies of viral infection and replication.


Assuntos
Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Hepatócitos/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/metabolismo , Internalização do Vírus , Animais , Ligação Competitiva , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Humanos , Ligantes , Lipopeptídeos/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Interferência de RNA , Ratos , Especificidade da Espécie , Simportadores/genética , Fatores de Tempo , Transfecção , Proteínas do Envelope Viral/metabolismo , Ligação Viral
19.
J Hepatol ; 60(4): 723-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24295872

RESUMO

BACKGROUND & AIMS: Chronic hepatitis B and hepatitis D are global health problems caused by the human hepatitis B and hepatitis D virus. The myristoylated preS1 domain of the large envelope protein mediates specific binding to hepatocytes by sodium taurocholate co-transporting polypeptide (NTCP). NTCP is a bile salt transporter known to be inhibited by cyclosporin A. This study aimed to characterize the effect of cyclosporin A on HBV/HDV infection. METHODS: HepaRG cells, primary human hepatocytes, and susceptible NTCP-expressing hepatoma cell lines were applied for infection experiments. The mode of action of cyclosporin A was studied by comparing the effect of different inhibitors, cyclophilin A/B/C-silenced cell lines as well as NTCP variants and mutants. Bile salt transporter and HBV receptor functions were investigated by taurocholate uptake and quantification of HBVpreS binding. RESULTS: Cyclosporin A inhibited hepatitis B and D virus infections during and--less pronounced--prior to virus inoculation. Binding of HBVpreS to NTCP was blocked by cyclosporin A concentrations at 8 µM. An NTCP variant deficient in HBVpreS binding but competent for bile salt transport showed resistance to cyclosporin A. Silencing of cyclophilins A/B/C did not abrogate transporter and receptor inhibition. In contrast, tacrolimus, a cyclophilin-independent calcineurin inhibitor, was inactive. CONCLUSIONS: HBV and HDV entry via sodium taurocholate co-transporting polypeptide is inhibited by cyclosporin A. The interaction between the drug and the viral receptor is direct and overlaps with a functional binding site of the preS1 domain, which mediates viral entry.


Assuntos
Ciclosporina/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus Delta da Hepatite/efeitos dos fármacos , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Ciclofilinas/farmacologia , Variação Genética , Células Hep G2 , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/patogenicidade , Vírus Delta da Hepatite/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Lipopeptídeos/farmacologia , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Estrutura Terciária de Proteína , Simportadores/genética , Simportadores/metabolismo , Tacrolimo/farmacologia
20.
Intervirology ; 57(3-4): 151-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25034482

RESUMO

Inhibition of virus entry has become a major concept in the development of new antiviral drugs. Entry inhibitors can either neutralize activities of viral surface proteins or target essential host factors such as (co)receptors. Due to its distinct tissue tropism and the highly specific viral and cellular factors involved in its entry, hepatitis B virus (HBV) is an ideal candidate for entry inhibition. Hepatitis B immunoglobulins neutralize infection by binding to the S-domain of HBV surface proteins and are used to prevent reinfection of the graft after liver transplantation. Novel S or preS-specific monoclonal antibodies are currently in development. The identification of sodium-taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor has revealed a suitable target for HBV entry inhibition. NTCP receptor function is blocked by a variety of different agents including Myrcludex B, a synthetic N-acylated preS1-derived lipopeptide that inhibits HBV entry in vitro and in vivo with high efficacy. Current antiviral treatment for chronic HBV-infected patients focuses on the inhibition of the viral polymerase via nucleos(t)ide analogues (NA). Entry inhibitors in combination with NAs could block reinfection and shield naive hepatocytes that emerge from natural liver turnover, opening up new therapeutic options.


Assuntos
Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/imunologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Antivirais/farmacologia , Azetidinas/farmacologia , Ciclosporina/farmacologia , Ezetimiba , Anticorpos Anti-Hepatite B/imunologia , Anticorpos Anti-Hepatite B/farmacologia , Hepatócitos/virologia , Humanos , Imunoglobulinas/farmacologia , Lipopeptídeos/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA