Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(15): e2307244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997160

RESUMO

In recent years, there has been rapid development in the field of shape memory materials with active deformation performance. However, bismaleimide, a widely used thermosetting material in aerospace, has been largely overlooked in shape memory applications. This work presents the synthesis of a molecule containing an alkene bond adjacent to an oxygen atom. Through molecular design, a one-time reaction between this specialized molecule and the bismaleimide molecule is successfully achieved, facilitated by the steric hindrance effect. Therefore, a new series of shape memory bismaleimide materials are obtained. By introducing a diamine to adjust the chain length, the properties of material are further improved, resulting in increasing static modulus by 506 times. The synthesized materials exhibit a broad glass transition temperature (Tg) range exceeding 153 °C, remarkable stiffness tunability. Notably, in the synthesis process of this materials series, the disulfide bonds are introduced, which facilitates the realization of self-healing and reprocessable functionalities in the resulting thermosetting materials. This significant advancement lays a solid foundation for the future recycling and reuse of aircraft, satellites, and other equipment, offering promising prospects for enhancing sustainability and efficiency within the aerospace industry.

2.
Langmuir ; 40(31): 15957-15968, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039655

RESUMO

In recent years, shape memory polymers (SMPs) and self-healing polymers (SHPs) have been research hotspots in the field of smart polymers owing to their unique stimulus response mechanisms. Previous research on SHPs has primarily focused on contact repair. However, in instances where substantial cracks occur during practical use, autonomous closure becomes challenging, impeding effective repair. By integration of the shape memory effect (SME) with SHPs, physical wound closure can be achieved via the SME, facilitating subsequent chemical/physical repair processes and enhancing self-healing effectiveness. This article reviews key findings from previous research on shape memory-assisted self-healing (SMASH) materials and addresses the challenges and opportunities for future investigation.

3.
Cereb Cortex ; 33(11): 7250-7257, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36775985

RESUMO

Depression after brain damage may impede the motivation and consequently influence the motor recovery after spinal cord injury (SCI); however, the neural mechanism underlying the psychological effects remains unclear. This study aimed to examine the casual connectivity changes of the emotion-motivation-motor circuit and the potential mediating effects of depression on motor recovery after SCI. Using the resting-state functional magnetic resonance imaging data of 35 SCI patients (24 good recoverers, GR and 11 poor recoverers, PR) and 32 healthy controls (HC), the results from the conditional Granger causality (GC) analysis demonstrated that the GR group exhibited sparser emotion-motivation-motor GC network compared with the HC and PR groups, though the in-/out-degrees of the emotion subnetwork and the motor subnetwork were relatively balanced in the HC and GR group. The PR group showed significantly inhibitory causal links from amygdala to supplementary motor area and from precentral gyrus to nucleus accumbens compared with GR group. Further mediation analysis revealed the indirect effect of the 2 causal connections on motor function recovery via depression severity. Our findings provide further evidence of abnormal causal connectivity in emotion-motivation-motor circuit in SCI patients and highlight the importance of emotion intervention for motor function recovery after SCI.


Assuntos
Córtex Motor , Traumatismos da Medula Espinal , Humanos , Depressão/diagnóstico por imagem , Depressão/etiologia , Imageamento por Ressonância Magnética , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Emoções , Córtex Motor/diagnóstico por imagem , Medula Espinal , Recuperação de Função Fisiológica
4.
Hum Brain Mapp ; 44(2): 388-402, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053219

RESUMO

This study explored how the neural efficiency and proficiency worked in athletes with different skill levels from the perspective of effective connectivity brain network in resting state. The deconvolved conditioned Granger causality (GC) analysis was applied to functional magnetic resonance imaging (fMRI) data of 35 elite athletes (EAs) and 42 student-athletes (SAs) of racket sports as well as 39 normal controls (NCs), to obtain the voxel-wised hemodynamic response function (HRF) parameters representing the functional segregation and effective connectivity representing the functional integration. The results showed decreased time-to-peak of HRF in the visual attention brain regions in the two athlete groups compared with NC and decreased response height in the advanced motor control brain regions in EA comparing to the nonelite groups, suggesting the neural efficiency represented by the regional HRF was different in early and advanced skill levels. GC analysis demonstrated that the GC values within the middle occipital gyrus had a linear trend from negative to positive, suggesting a stepwise "neural proficiency" of the effective connectivity from NC to SA then to EA. The GC values of the inter-lobe circuits in EA had the trend to regress to NC levels, in agreement with the neural efficiency of these circuits in EA. Further feature selection approach suggested the important role of the cerebral-brainstem GC circuit for discriminating EA. Our findings gave new insight into the complementary neural mechanisms in brain functional segregation and integration, which was associated with early and advanced skill levels in athletes of racket sports.


Assuntos
Encéfalo , Esportes com Raquete , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Atletas , Adaptação Fisiológica , Imageamento por Ressonância Magnética/métodos
5.
Crit Rev Food Sci Nutr ; 63(30): 10607-10620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35608023

RESUMO

Apple is the largest fruit crop produced in temperate regions and is a popular fruit worldwide. It is, however, susceptible to a variety of postharvest fungal pathogens, including Penicillium expansum, Botrytis cinerea, Botryosphaeria dothidea, Monilia spp., and Alternaria spp. Decays resulting from fungal infections severely reduce apple quality and marketable yield. Biological control utilizing bacterial and fungal antagonists is an eco-friendly and effective method of managing postharvest decay in horticultural crops. In the current review, research on the pathogenesis of major decay fungi and isolation of antagonists used to manage postharvest decay in apple is presented. The mode of action of postharvest biocontrol agents (BCAs), including recent molecular and genomic studies, is also discussed. Recent research on the apple microbiome and its relationship to disease management is highlighted, and the use of additives and physical treatments to enhance biocontrol efficacy of BCAs is reviewed. Biological control is a critical component of an integrated management system for the sustainable approaches to apple production. Additional research will be required to explore the feasibility of developing beneficial microbial consortia and novel antimicrobial compounds derived from BCAs for postharvest disease management, as well as genetic approaches, such as the use of CRISPR/Cas9 technology.


Assuntos
Malus , Frutas/microbiologia
6.
Small ; 18(13): e2105958, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35362270

RESUMO

Shape memory polymers (SMPs) are a class of smart materials that change shape when stimulated by environmental stimuli. Different from the shape memory effect at the macro level, the introduction of micro-patterning technology into SMPs strengthens the exploration of the shape memory effect at the micro/nano level. The emergence of shape memory micro/nano patterns provides a new direction for the future development of smart polymers, and their applications in the fields of biomedicine/textile/micro-optics/adhesives show huge potential. In this review, the authors introduce the types of shape memory micro/nano patterns, summarize the preparation methods, then explore the imminent and potential applications in various fields. In the end, their shortcomings and future development direction are also proposed.


Assuntos
Polímeros , Têxteis
7.
Crit Rev Food Sci Nutr ; 62(30): 8307-8318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33998844

RESUMO

Kiwifruit is purchased by consumers worldwide and is increasing in demand. Unfortunately, kiwifruit is susceptible to postharvest decay caused by a variety of fungal pathogens, including Botrytis cinerea, Penicillium expansum, Alternaria alternata, Botryosphaeria dothidea, and Diaporthe spp. Among these pathogens, B. cinerea is the most prevalent and devastating. Infections by these fungal pathogens result in a deterioration in fruit quality and a reduction in marketable yield. Eco-friendly methods to control kiwifruit postharvest decay have been explored as alternatives to the use of synthetic fungicides. In this review, we provide an overview and discuss the virulence and pathogenesis of fungi that are causal agents of kiwifruit decay, especially B. cinerea, including recent molecular and genomic studies. Advances in pre- and postharvest measures for postharvest decay management, including biological control, physical applications, the use of natural compounds and plant hormones, and the use of combined methods, are also reviewed. Eco-friendly control measures are a critical component of an integrated management approach for sustainable production of kiwifruit. The need for further research on the use of microbial consortia for the management of postharvest diseases of kiwifruit is also discussed.


Assuntos
Actinidia , Fungicidas Industriais , Frutas/microbiologia , Fungicidas Industriais/farmacologia
8.
Hum Brain Mapp ; 40(2): 420-431, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277624

RESUMO

Training-induced neuroplasticity has been described in athletes' population. However, it remains largely unknown how regular training and sports proficiency modifies neuronal circuits in the human brain. In this study, we used voxel-based morphometry and stepwise functional connectivity (SFC) analyses to uncover connectivity changes in the functional stream architecture in student-athletes at early stages of sensorimotor skill training. Thirty-two second-year student-athletes whose major was little-ball sports and thirty-four nonathlete controls were recruited for the study. We found that athletes showed greater gray matter volume in the right sensorimotor area, the limbic lobe, and the anterior lobe of the cerebellum. Furthermore, SFC analysis demonstrated that athletes displayed significantly smaller optimal connectivity distance from those seed regions to the dorsal attention network (DAN) and larger optimal connectivity distance to the default mode network (DMN) compared to controls. The Attention Network Test showed that the reaction time of the orienting attention subnetwork was positively correlated with SFC between the seeds and the DAN, while negatively correlated with SFC between the seeds and the DMN. Our findings suggest that neuroplastic adaptations on functional connectivity streams after motor skill training may enable novel information flow from specific areas of the cortex toward distributed networks such as the DAN and the DMN. This could potentially regulate the focus of external and internal attention synchronously in athletes, and consequently accelerate the reaction time of orienting attention in athletes.


Assuntos
Adaptação Fisiológica/fisiologia , Atletas , Atenção/fisiologia , Cerebelo , Córtex Cerebral/fisiologia , Conectoma/métodos , Substância Cinzenta/anatomia & histologia , Destreza Motora/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Cerebelo/anatomia & histologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Lobo Límbico/anatomia & histologia , Lobo Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Córtex Sensório-Motor/anatomia & histologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiologia , Adulto Jovem
9.
Soft Matter ; 12(10): 2708-14, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26865175

RESUMO

Wettability modification on a polymer surface is of immense importance for flexible electronics and biomedical applications. Herein, controlled wettability of a styrene-based shape memory polymer has been realized by introducing micro-cracks on the polymer surface for the first time. The cracks were purposely prepared by thin metal film constrained deformation on the polymer. After the removal of the metallic film, wettability was dramatically enhanced by showing a remarkable reduction in the contact angle with water droplets from 85° to 25°. Subsequent systematic characterization techniques like XPS and SEM revealed that such observation could be attributed to the increased density of hydrophilic groups and the roughened surface. In addition, by controlling the temperature for annealing the treated polymer, the surface could be switched reversely to water-repellent. Therefore, this paper offers a smart tactic to manipulate the surface wettability of a shape memory polymer freely. The features of the controlled wettability surface such as high tenability, high stability and easy fabrication are promising for microfluidic switching and molecule/cell capture-release.


Assuntos
Poliestirenos/química , Interações Hidrofóbicas e Hidrofílicas , Metais/química , Propriedades de Superfície , Água/química , Molhabilidade
10.
Soft Matter ; 12(11): 2894-900, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686222

RESUMO

Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 µm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.

11.
Soft Matter ; 12(26): 5824, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27326699

RESUMO

Correction for 'Optically transparent high temperature shape memory polymers' by Xinli Xiao et al., Soft Matter, 2016, 12, 2894-2900.

12.
Langmuir ; 30(9): 2335-45, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24528131

RESUMO

A roller electrospinning technique is combined with sol-gel chemistry to fabricate silica and polymeric materials on conductive and nonconductive substrates to verify its ability for controlling the long-range periodic structure of the final product. According to the experimental results, formation of the one-dimensional periodic silica structure was dependent on the electrical conductivity of the collector substrate. The periodic density seems to be related to the width of silica product. No effect from the electrical conductivity of collector substrate on the structure of polymeric system was observed. An energy transformation model was proposed to investigate the formation mechanism of this periodic structure. The theoretical simulation indicates that large width-to-thickness ratio of the product and high-energy transformation efficiency favor the formation of the long-range periodic structure.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38442060

RESUMO

Neural networks are developed to model the behavior of the brain. One crucial question in this field pertains to when and how a neural network can memorize a given set of patterns. There are two mechanisms to store information: associative memory and sequential pattern recognition. In the case of associative memory, the neural network operates with dynamical attractors that are point attractors, each corresponding to one of the patterns to be stored within the network. In contrast, sequential pattern recognition involves the network memorizing a set of patterns and subsequently retrieving them in a specific order over time. From a dynamical perspective, this corresponds to the presence of a continuous attractor or a cyclic attractor composed of the sequence of patterns stored within the network in a given order. Evidence suggests that the brain is capable of simultaneously performing both associative memory and sequential pattern recognition. Therefore, these types of attractors coexist within the neural network, signifying that some patterns are stored as point attractors, while others are stored as continuous or cyclic attractors. This article investigates the coexistence of cyclic attractors and continuous or point attractors in certain nonlinear neural networks, enabling the simultaneous emergence of various memory mechanisms. By selectively grouping neurons, conditions are established for the existence of cyclic attractors, continuous attractors, and point attractors, respectively. Furthermore, each attractor is explicitly represented, and a competitive dynamic emerges among these coexisting attractors, primarily regulated by adjustments to external inputs.

14.
Ultrasonics ; 142: 107393, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004040

RESUMO

Existing stress evaluation methods based on the Lamb waves mainly use the time of flight (TOF) or velocity as the means of stress measurement. However, these two features used for stress measurement are sometimes insensitive to stress changes. Therefore, it is essential to explore other features that are potentially more sensitive to stress changes. The time-frequency spectrums of signals containing stress information have not yet been fully studied for stress evaluation. This paper proposes a uniaxial stress measurement method based on two time-frequency characteristics of Lamb waves, i.e., the slope of time-frequency spectrum distribution (TFSD) and pulse width impact factor. Theoretical expressions of the slope of TFSD are derived. The impacts of excitation signal parameters (i.e., bandwidth and center frequency) and noise on two time-frequency characteristics were discussed. Then, the fitting results of the finite element simulation are consistent with the results predicted by theory. To experimentally validate the proposed theory, aluminum plate specimens with two different types of adhesives were used for the experiment. According to the experimental stress measurement expression, three uniaxial tensile tests in the range of 35-95 MPa were conducted on the identical batch of specimens. The maximum standard deviation of multiple measured stress based on pulse width impact factor is 3.76433 MPa, demonstrating excellent measurement stability. The maximum standard deviation of multiple measured stress based on the slope of TFSD is 9.12492 MPa. It shows that the proposed methodology is a promising alternative for stress measurement.

15.
ACS Appl Mater Interfaces ; 15(1): 2163-2171, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36571177

RESUMO

High-performance shape memory polymers with multifunctions are essential in sensors, wearable flexible electronics, artificial muscle actuators, and reversible morphing structures. In this work, a transparent and humidity-responsive shape memory polyurea featuring a high tensile strength (51 MPa), a high recovery stress (12 MPa) with an high energy output (0.98 J/g), and tolerance to extreme environments (retains great malleability at -196 °C) is prepared through constructing a bioinspired hard-soft nanophase structure and through hierarchical hydrogen bonding in the molecular network. The hard segment of a strong hydrogen bonding region is in charge of humidity-responsive behavior, and the soft segment of a weak bonding region provides the flexibility of the molecular chain. Furthermore, the periodicity of the phase-separated domains is 12 nm as characterized by small-angle X-ray scattering. The hydrogen bonding cross-linked network can be opened under the action of stress and re-bonded by heating, just like a zipper structure of reversible linking property. This unique molecular structure contributes to the humidity-responsive behavior of polyurea rolling up 160° in 20 s on the palm, as well as a high energy output lifting a 100 g weight exceeding 1631 times its own mass to 60 mm. The molecular structure of the hard-soft nanophase and the hierarchical hydrogen bonding offer an effective approach toward achieving a high-performance shape memory polymer with humidity-sensitive functions.

16.
ACS Appl Mater Interfaces ; 15(17): 21496-21506, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084334

RESUMO

The triple-shape memory polymer (TSMP) can be programmed into two temporary shapes (S1 and S2) and shows an ordinal recovery from S2 to S1 and eventually to the permanent shape upon heating, which realizes more complex stimulus-response motions. We introduced a novel strategy for forming triple-shape memory cyanate ester (TSMCE) resins with high strength and fracture toughness via three-step curing, including four-dimensional (4D) printing, UV post-curing, and thermal curing. The obtained TSMCE resins presented two separated glass transition temperature (Tg) regions due to the formation of an interpenetrating polymer network (IPN), which successfully endowed the polymers with the triple-shape memory effect. The two Tg increased with the increasing cyanate ester (CE) prepolymer content; their ranges were 82.7-102.1 °C and 164.4-229.0 °C, respectively. The fracture strain of the IPN CE resin was up to 10.9%. Moreover, the cooperation of short carbon fibers (CFs) and glass fibers (GFs) with the polymer-accelerated phase separation resulted in two well-separated Tg peaks exhibiting better excellent triple-shape memory behaviors and fracture toughness. The strategy for combining the IPN structure and 4D printing provides insight into the preparation of shape memory polymers integrating high strength and toughness, multiple-shape memory effect, and multifunctionality.

17.
Adv Healthc Mater ; 12(16): e2201975, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520058

RESUMO

As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.


Assuntos
Materiais Inteligentes , Alicerces Teciduais , Osso e Ossos , Impressão Tridimensional , Liberação Controlada de Fármacos
18.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112039

RESUMO

Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by adding polyethylene glycol (PEG) with linear polymer chains to the cyanate cross-linked network. The low reactivity of PEG overcame the shortcomings of high brittleness and poor deformability while endowing cyanate resin with excellent shape memory properties. The SMCR with a glass transition temperature of 205.8 °C exhibited good stability after vacuum thermal cycling. The SMCR maintained a stable morphology and chemical composition after repeated high-low temperature cycle treatments. The SMCR matrix was purified by vacuum thermal cycling, which resulted in an increase in its initial thermal decomposition temperature by 10-17 °C. The continuous vacuum high and low temperature relaxation of the vacuum thermal cycling increased the cross-linking degree of the SMCR, which improved the mechanical properties and thermodynamic properties of SMCR: the tensile strength of SMCR was increased by about 14.5%, the average elastic modulus was greater than 1.83 GPa, and the glass transition temperature increased by 5-10 °C. Furthermore, the shape memory properties of SMCR after vacuum thermal cycling treatment were well maintained due to the stable triazine ring formed by the cross-linking of cyanate resin. This revealed that our developed SMCR had good resistance to vacuum thermal cycling and thus may be a good candidate for aerospace engineering.

19.
Adv Healthc Mater ; 12(16): e2300400, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071549

RESUMO

In this paper, isocyanoethyl methacrylate (IEM) is used to functionalize the two ends of poly(ethylene glycol) (PEG) diol with acrylic acid groups through an urethanization reaction. The synthesized PEG/IEM resin is then photo-cured with a 405 nm ultraviolet lamp. Ttrans of the PEG/IEM resin can be regulated by the different molecular weights of PEG and the use of plasticizer Triacetin to reach 44 °C, which is closer to the human body temperature. Cytotoxicity assay and DMA shape memory cycling testing show that the PEG/IEM resin has excellent biocompatibility and shape memory properties. The flower structure is prepared and its shape recovery process is demonstrated. The performance of 10wt% nano Fe3 O4 /PEG4000/IEM resin and its composite spring stent structure satisfy the requirement of the stent properties in vivo, and can quickly recover to the original shape under magnetically driven. This work provides a material option for developing new biological application devices such as ureter stents.


Assuntos
Metacrilatos , Ureter , Humanos , Stents , Teste de Materiais
20.
Polymers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765592

RESUMO

With the continuous increase in human demand to improve aircraft performance, intelligent aircraft technologies have become a popular research field in recent years. Among them, the deformable skin structure has become one of the key technologies to achieve excellent and reliable performance. However, during the service, deformable skin structures may encounter problems such as surface impact and adhesion of droplets in rainy weather or surface icing in low-temperature environments, which can seriously affect the flight safety of the aircraft. One way to overcome these issues is to use superhydrophobic shape memory materials in the structure. In this regard, first, shape memory composites were prepared with shape memory epoxy resin as the matrix and carbon fiber orthogonal woven fabric as the reinforcement material. Superhydrophobic shape memory composites (SSMCs) were then obtained by casting the kirigami composite with superhydrophobic carbon nanotube-polydimethylsiloxane (CNT@PDMS) mixture, and the surface was processed by laser micromachining. Shape memory performance and surface wetting performance were determined by material testing methods. The results showed that the shape memory recovery rate can reach 85.11%, the surface is superhydrophobic, the average water contact angle is 156.9 ± 4.4°, and the average rolling angle is 3 ± 0.5°. The three-point bending test of the specimens with different kirigami cell configurations showed that the shape memory composite based on the rectangular structure has the best deformability with an aspect ratio of 0.4. From the droplet impact test, it was found that the impact speed of water droplets and the curvature of the surface can greatly affect the dynamic performance of water. This work is expected to be of significant research value and importance for developing functional deformable skin materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA