Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 27(3-4): 341-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21471723

RESUMO

AIMS: Mitochondrial dysfunction plays important roles in the development of diabetes. Elevated nitric oxide (NO) synthase inhibitor asymmetric dimethylarginine (ADMA) has been shown to be closely related to diabetes. But the relationship between them in diabetes has not been determined. This study was to explore the role of ADMA in hepatic mitochondrial dysfunction and its potential mechanisms in diabetic rats and hepatocytes. METHODS: Respiratory enzymes activities, mitochondrial transmembrane potential and ATP content were measured to evaluate mitochondrial function. The copy number ratio of mitochondrial gene to nuclear gene was used to represent mitochondrial biogenesis. The activity of superoxide dismutase and malondialdehyde content were detected to reflect oxidative stress. Furthermore, changes in ADMA and NO contents, uncoupling protein 2 (UCP2) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) transcriptions were determined. RESULTS: Elevated ADMA levels in serum of diabetic rats were found to be associated with hepatic mitochondrial dysfunction reflected by reductions of respiratory enzyme activities, mitochondrial membrane potential and ATP contents. Similar mitochondrial dysfunction also occurred in ADMA-treated hepatocytes. The mitochondrial dysfunction observed in diabetic rats or hepatocytes was accompanied with suppressions of mitochondrial biogenesis, PGC-1α transcription and NO synthesis as well as enhances of UCP 2 transcription and oxidative stress. These effects of ADMA could be attenuated by treatments with antioxidant or NO donor. CONCLUSIONS: These results indicate that elevated endogenous ADMA contributes to hepatic mitochondrial dysfunction in diabetic rats, and underlying mechanisms may be related to the suppression of mitochondrial biogenesis and mitochondrial uncoupling via inhibiting NO synthesis and enhancing oxidative stress.


Assuntos
Arginina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Mitocôndrias Hepáticas/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Arginina/sangue , Arginina/farmacologia , Arginina/fisiologia , Linhagem Celular Tumoral , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Inibidores Enzimáticos/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/fisiologia , Canais Iônicos/metabolismo , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Proteína Desacopladora 2
2.
FEBS Lett ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32049361

RESUMO

Adenosine deaminase acting on RNA 1 (ADAR1) has been shown to participate in the regulation of endothelial cells (ECs), as well as local and systemic inflammatory responses. Here, we find that bacterial lipopolysaccharide (LPS)-induced upregulation of ADAR1 in lung ECs is impaired in aged mice, an animal model with high rates of sepsis and mortality. Endothelial cell-specific ADAR1 knockout (ADAR1ECKO ) mice suffer from higher mortality rates, aggravated lung injury, and increased vascular permeability under LPS challenge. In primary ADAR1 knockout ECs, expression of the melanoma differentiation-associated gene 5 (MDA5), a downstream effector of ADAR1, is significantly elevated. MDA5 knockout completely rescues the postnatal offspring death of ADAR1ECKO mice. However, there is no reduction in mortality or apoptosis in lung cells of ADAR1ECKO /MDA5-/- mice challenged with LPS, indicating the involvement of an MDA5-independent mechanism in this process.

3.
Br J Pharmacol ; 175(8): 1157-1172, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28631302

RESUMO

BACKGROUND AND PURPOSE: Vascular inflammation, including the expression of inflammatory cytokines in endothelial cells, plays a critical role in hyperhomocysteinaemia-associated vascular diseases. Cathepsin V, specifically expressed in humans, is involved in vascular diseases through its elastolytic and collagenolytic activities. The aim of this study was to determine the effects of cathepsin V on l-homocysteine-induced vascular inflammation. EXPERIMENTAL APPROACH: A high methionine diet-induced hyperhomocysteinaemic mouse model was used to assess cathepsin V expression and vascular inflammation. Cultures of HUVECs were challenged with l-homocysteine and the cathepsin L/V inhibitor SID to assess the pro-inflammatory effects of cathepsin V. Transfection and antisense techniques were utilized to investigate the effects of cathepsin V on the dual-specificity protein phosphatases (DUSPs) and MAPK pathways. KEY RESULTS: Cathepsin L (human cathepsin V homologous) was increased in the thoracic aorta endothelial cells of hyperhomocysteinaemic mice; l-homocysteine promoted cathepsin V expression in HUVECs. SID suppressed the activity of cathepsin V and reversed the up-regulation of inflammatory cytokines (IL-6, IL-8 and TNF-α), adhesion and chemotaxis of leukocytes and vascular inflammation induced by l-homocysteine in vivo and in vitro. Increased cathepsin V promoted the degradation of DUSP6 and DUSP7, phosphorylation and subsequent nuclear translocation of ERK1/2, phosphorylation of STAT1 and expression of IL-6, IL-8 and TNF-α. CONCLUSIONS AND IMPLICATIONS: This study has identified a novel mechanism, which shows that l-homocysteine-induced upregulation of cathepsin V mediates vascular endothelial inflammation under high homocysteine condition partly via ERK1/2 /STAT1 pathway. This mechanism could represent a potential therapeutic target in hyperaemia-associated vascular diseases. LINKED ARTICLES: This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.


Assuntos
Catepsinas/metabolismo , Homocisteína/farmacologia , Hiper-Homocisteinemia/metabolismo , Doenças Vasculares/metabolismo , Animais , Aorta Torácica/citologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Homocisteína/sangue , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células THP-1
4.
PLoS One ; 9(2): e97125, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24918756

RESUMO

OBJECTIVE: Increasing evidence suggested that endoplasmic reticulum (ER) stress contributes to insulin resistance, which plays an important role in the development of type 2 diabetes mellitus (T2DM). Accumulation of endogenous nitric oxide synthase (NOS) inhibitor, asymmetric dimethylarginine (ADMA), is associated with insulin resistance, T2DM, and diabetic cardiovascular complications, although the mechanisms have not been elucidated. This study was to determine whether elevated endogenous ADMA is involved in hepatic ER stress of type 2 diabetic rats, verify their causal relationship, and elucidate the potential mechanism underlying ADMA induced ER stress in rat hepatocytes. METHODS: Immunoglobulin binding protein (Bip) transcription, eukaryotic initiation factor 2α kinase (eIF2α) phosphorylation, X box-binding protein-1 (XBP-1) mRNA splicing and C/EBP homologues protein (CHOP) expression were measured to reflect ER stress. Contents of ADMA and nitrite/nitrate as well as activities or expression of NOS and dimethylarginine dimethylaminohydrolase (DDAH) were detected to show the changes in DDAH/ADMA/NOS/NO pathway. The lipid peroxidation product malondialdehyde content and antioxidant enzyme superoxide dismutase activity were analyzed to evaluate oxidative stress. RESULTS: ER stress was provoked in the liver of type 2 diabetic rats, as expressed by increases of Bip transcription, eIF2α phosphorylation, XBP-1 splicing and CHOP expression, all of which were in parallel with the elevation of serum ADMA, suppression of NO generation, NOS and DDAH activities in the liver. Exposure of hepatocytes to ADMA or hydrogen peroxide also induced ER stress, which was associated with the inhibition of NO production and increase of oxidative stress. Treatment of hepatocytes with antioxidant pyrrolidine dithiocarbamate not only decreased ADMA-induced oxidative stress and inhibition of NO production but also reduced ADMA-triggered ER stress. CONCLUSIONS: These results indicate that increased endogenous ADMA contributes to hepatic ER stress in type 2 diabetic rats, and the mechanism underlying ADMA-induced ER stress may relate to oxidative stress via NOS uncoupling.


Assuntos
Arginina/análogos & derivados , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Fígado/metabolismo , Animais , Arginina/sangue , Arginina/metabolismo , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA