Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Stem Cells ; 27(10): 2373-82, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19544474

RESUMO

Gliomas, the most frequent primitive central nervous system tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. Transforming growth factor (TGF)-alpha, an epidermal growth factor family member, is frequently overexpressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGF-alpha is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGF-alpha dedifferentiating effects are associated with cancerous transforming effects, we grafted intracerebrally dedifferentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo, and did not give birth to tumors. When astrocytes dedifferentiated with TGF-alpha were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGF-alpha after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress.


Assuntos
Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/induzido quimicamente , Transformação Celular Neoplásica/induzido quimicamente , Glioma/induzido quimicamente , Células-Tronco/efeitos dos fármacos , Fator de Crescimento Transformador alfa/farmacologia , Animais , Astrócitos/metabolismo , Astrócitos/efeitos da radiação , Neoplasias Encefálicas/fisiopatologia , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/fisiologia , Desdiferenciação Celular/efeitos da radiação , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Células Cultivadas , Meios de Cultura Livres de Soro/farmacologia , Raios gama/efeitos adversos , Glioma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transplante de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Estresse Fisiológico/fisiologia , Estresse Fisiológico/efeitos da radiação , Fator de Crescimento Transformador alfa/metabolismo
2.
BMC Cancer ; 10: 66, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20181261

RESUMO

BACKGROUND: Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies. METHODS: We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. RESULTS: A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide. CONCLUSIONS: Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.


Assuntos
Antígenos CD34/biossíntese , Antígenos CD/biossíntese , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glicoproteínas/biossíntese , Antígenos CD15/biossíntese , Células-Tronco Neoplásicas/citologia , Neurônios/patologia , Antígeno AC133 , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Peptídeos , Proteômica/métodos
3.
Neuropathology ; 29(1): 31-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18564099

RESUMO

Neuropathological analysis of cellular mechanisms underlying gliosis and brain tumors is slowed by the lack of markers allowing to distinguish glial subpopulations in normal or pathological human brains. We therefore evaluated GFAPdelta immunostaining in a wide panel of astrogliosis and gliomas, and compared these with GFAP and vimentin. In normal tissue, gliosis and gliomas, GFAPdelta immunostaining was observed in astrocytes with relatively high GFAP levels. GFAPdelta immunostaining was most conspicuous in glia limitans astrocytes. In Chaslin's gliosis accompanying chronic epilepsy, GFAPdelta immunostaining evidenced the glia limitans reactive astrocytes as the source of the dense fibrillary meshwork typical of Chaslin's gliosis. Interestingly GFAPdelta and vimentin immunostainings coincided in normal tissues and gliosis, but not in gliomas. Altogether these results show that combined GFAP, GFAPdelta and vimentin labelling reveals fine gliofilament regulation in normal and pathological brain.


Assuntos
Astrócitos/citologia , Astrócitos/patologia , Encefalopatias/patologia , Neoplasias Encefálicas/patologia , Proteína Glial Fibrilar Ácida/análise , Glioma/patologia , Adolescente , Adulto , Idoso , Astrócitos/química , Encéfalo/citologia , Encéfalo/patologia , Química Encefálica , Encefalopatias/metabolismo , Neoplasias Encefálicas/química , Epilepsia/metabolismo , Epilepsia/patologia , Feminino , Glioma/química , Gliose/metabolismo , Gliose/patologia , Hipocampo/química , Hipocampo/patologia , Humanos , Imuno-Histoquímica/métodos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Esclerose/metabolismo , Esclerose/patologia , Vimentina/análise , Adulto Jovem
4.
Mol Biol Cell ; 17(12): 5141-52, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16987961

RESUMO

Phosphoprotein enriched in astrocytes-15 kDa (PEA-15), a phosphoprotein enriched in astrocytes, inhibits both apoptosis and proliferation in normal and cancerous cells. Here, analysis of PEA-15 expression in glioblastoma organotypic cultures revealed low levels of PEA-15 in tumor cells migrating away from the explants, regardless of the expression levels in the originating explants. Because glioblastomas are highly invasive primary brain tumors that can originate from astrocytes, we explored the involvement of PEA-15 in the control of astrocyte migration. PEA-15-/- astrocytes presented an enhanced motility in vitro compared with their wild-type counterparts. Accordingly, NIH-3T3 cells transfected by green fluorescent protein-PEA-15 displayed a reduced migration. Reexpression of PEA-15 restored PEA-15-/- astrocyte motility to wild-type levels. Pharmacological manipulations excluded a participation of extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt, and calcium/calmodulin-dependent protein kinase II in this effect of PEA-15. In contrast, treatment by bisindolylmaleimide, Gö6976, and rottlerin, and chronic application of phorbol 12-myristate 13-acetate and/or bryostatin-1 indicated that PKC delta mediated PEA-15 inhibition of astrocyte migration. PEA-15-/- astrocytes constitutively expressed a 40-kDa form of PKC delta that was down-regulated upon PEA-15 reexpression. Together, these data reveal a new function for PEA-15 in the inhibitory control of astrocyte motility through a PKC delta-dependent pathway involving the constitutive expression of a catalytic fragment of PKC delta.


Assuntos
Astrócitos/citologia , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C-delta/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Proteínas Reguladoras de Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Peso Molecular , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Cicatrização/fisiologia
5.
PLoS One ; 6(1): e16375, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21297991

RESUMO

BACKGROUND: Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting. CONCLUSIONS/SIGNIFICANCE: In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.


Assuntos
Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/patologia , Adolescente , Separação Celular , Criança , Pré-Escolar , Feminino , Citometria de Fluxo , Glioma/patologia , Humanos , Imunofenotipagem , Lactente , Masculino , Células-Tronco Neurais , Análise de Sobrevida
6.
Brain Pathol ; 20(2): 399-411, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19486010

RESUMO

A persistent cycling cell population in the normal adult human brain is well established. Neural stem cells or neural progenitors have been identified in the subventricular zone and the dentate gyrus subgranular layer (SGL), two areas of persistent neurogenesis. Cycling cells in other human normal brain areas, however, remains to be established. Here, we determined the distribution and identity of these cells in the cortex, the white matter and the hippocampal formation of adult patients with and without chronic temporal lobe epilepsy using immunohistochemistry for the cell cycle markers Ki-67 (Mib-1) and minichromosome maintenance protein 2. Rare proliferative neuronal precursors expressing the neuronal antigen neuronal nuclei were restricted to the SGL. In contrast, the oligodendrocyte progenitor cell markers Olig2 and the surface antigen NG2 were expressed by the vast majority of cycling cells scattered throughout the cortex and white matter of both control and epileptic patients. Most of these cycling cells were in early G1 phase, and were significantly more numerous in epileptic than in non-epileptic patients. These results provide evidence for a persistent gliogenesis in the human cortex and white matter that is enhanced in an epileptic environment.


Assuntos
Células-Tronco Adultas/fisiologia , Antígenos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/fisiologia , Ciclo Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/fisiologia , Proteoglicanas/metabolismo , Adulto , Idoso , Proteínas de Ciclo Celular/metabolismo , Córtex Cerebral/fisiologia , Doença Crônica , Epilepsia do Lobo Temporal/metabolismo , Feminino , Hipocampo/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo , Fibras Nervosas Mielinizadas/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Proteínas Nucleares/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA