RESUMO
Oxidative stress is a widespread causative agent of disease. Together with its general relevance for biomedicine, such a dynamic is recognizably detrimental to space exploration. Among other solutions, cerium oxide nanoparticles (or nanoceria, NC) display a long-lasting, self-renewable antioxidant activity. In a previous experiment, we evaluated oxidative imbalance in rat myoblasts in space, aboard the International Space Station, and unveiled possible protective effects from NC through RNA sequencing. Here, we focus on the myoblast response to NC on land by means of proteomics, defining a list of proteins that putatively react to NC and confirming nucleosomes/histones as likely mediators of its molecular action. The proteomics data set we present here and its counterpart from the space study share four factors. These are coherently either up- (Hist1h4b) or down-regulated (Gnl3, Mtdh, Trip12) upon NC exposure.
RESUMO
The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.
RESUMO
We report a detailed study on the first colloidal synthesis of NiAs nanocrystals. By optimizing the synthesis parameters, we were able to obtain trioctylphosphine-capped NiAs nanoplatelets with an average diameter of â¼10 nm and a thickness of ca. 4 nm. We then studied the performance of such NiAs nanocrystals as electrocatalysts for electrochemical water splitting reactions, namely, acidic hydrogen evolution reaction (HER) and alkaline oxygen evolution reaction (OER). These nanocrystals were found to be the most HER active ones among the transition metal arsenides reported to date despite exhibiting less than 40 h of stability under benchmark operative conditions (i.e., -10 mA cmgeo -2). When tested as alkaline OER electrocatalysts, our NiAs nanocrystals behaved as a pre-catalyst and transformed superficially into an active Ni-oxy/hydroxide. As a result, NiAs nanocrystals featured an OER activity higher than that of benchmark Ni0 nanocrystals. Noticeably, the OER performance, in terms of , was retained for up to 60 h of continuous operation. The present study highlights how transition metal arsenides, whose structural features could be successfully controlled through a proper tuning of the synthetic parameters, might represent an emerging class of materials for electrocatalytic applications.
RESUMO
Over the past two decades, intensive research efforts have been devoted to suppressions of Auger recombination in metal-chalcogenide and perovskite nanocrystals (PNCs) for the application of photovoltaics and light emitting devices (LEDs). Here, we have explored dodecahedron cesium lead bromide perovskite nanocrystals (DNCs), which show slower Auger recombination time compared to hexahedron nanocrystals (HNCs). We investigate many-body interactions that are manifested under high excitation flux density in both NCs using ultrafast spectroscopic pump-probe measurements. We demonstrate that the Auger recombination rate due to multiexciton recombinations are lower in DNCs than in HNCs. At low and intermediate excitation density, the majority of carriers recombine through biexcitonic recombination. However, at high excitation density (>1018 cm-3) a higher number of many-body Auger process dominates over biexcitonic recombination. Compared to HNCs, high PLQY and slower Auger recombinations in DNCs are likely to be significant for the fabrication of highly efficient perovskite-based photonics and LEDs.
RESUMO
Metal halide perovskite nanocrystals (NCs) are promising for photovoltaic and light-emitting applications. Due to the softness of their crystal lattice, structural modifications have a critical impact on their optoelectronic properties. Here we investigate the size-dependent optoelectronic properties of CsPbI3 NCs ranging from 7 to 17 nm, employing temperature and pressure as thermodynamic variables to modulate the energetics of the system and selectively tune the interatomic distances. By temperature-dependent photoluminescence spectroscopy, we have found that luminescence quenching channels exhibit increased non-radiative losses and weaker exciton-phonon coupling in bigger particles, in turn affecting the luminescence efficiency. Through pressure-dependent measurements up to 2.5 GPa, supported by XRD characterization, we revealed a NC-size dependent solid-solid phase transition from the γ-phase to the δ-phase. Importantly, the optical response to these structural changes strongly depends on the size of the NC. Our findings provide an interesting guideline to correlate the size and structural and optoelectronic properties of CsPbI3 NCs, important for engineering the functionalities of this class of soft semiconductors.
RESUMO
Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field. The drug is selected based on ad hoc patient-specific screenings; moreover, the nanovector is decorated with cell membranes derived from patients' cells, aiming at increasing homotypic and personalized targeting. It is demonstrated that this functionalization not only enhances the selectivity of the nanovectors toward patient-derived GBM cells, but also their blood-brain barrier in vitro crossing ability. The localized magnetic hyperthermia induces both thermal and oxidative intracellular stress that lead to lysosomal membrane permeabilization and to the release of proteolytic enzymes into the cytosol. Collected results show that hyperthermia and chemotherapy work in synergy to reduce GBM cell invasion properties, to induce intracellular damage and, eventually, to prompt cellular death.
Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Humanos , Glioblastoma/patologia , Hipertermia Induzida/métodos , Resultado do Tratamento , Fenômenos Magnéticos , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapiaRESUMO
Metal halide perovskites are attracting great interest for the fabrication of light-emitting devices encompassing light-emitting diodes, lasers, and scintillators. As the field develops, perovskite doping emerges as a promising way to enrich the material functionalities and enhance the luminescence yield and tunability. While Mn+2 addition has been well explored, doping with lanthanides has received less attention, even though their intense and line-like luminescence is interesting for a wide range of applications. In this work, we study the doping of NMA2PbBr4 layered perovskites with Eu3+ and Eu3+ tetrakis ß-diketonate complex. By exploiting the antenna effect of the naphthalene-based functional cation (NMA = 1-naphtylmethylammonium), direct sensitization of Eu3+ is obtained; nevertheless, it is not very efficient due to the non-optimal energy level alignment with the resonance acceptor level of the lanthanide. Protection of Eu3+ in the form of tetrakis ß-diketonate complex grants a more ideal coordination geometry and energetic landscape for the energy transfer to europium in the perovskite matrix, allowing for a nearly 30-fold improvement in luminescence yield. This work sets the basis for new synthetic strategies for the design of functional perovskite/lanthanide host-guest systems with improved luminescence properties.
RESUMO
A photocatalytic system for the degradation of aqueous organic pollutants under visible light irradiation is obtained by an innovative approach based on ceria/platinum (Pt) hybrid nanoclusters on cellulose acetate fibrous membranes. The catalytic materials are fabricated by supersonic beam deposition of Pt nanoclusters directly on the surface of electrospun cellulose acetate fibrous mats, pre-loaded with a cerium salt precursor that is transformed into ceria nanoparticles directly in the solid mats by a simple thermal treatment. The presence of Pt enhances the oxygen vacancies on the surface of the formed ceria nanoparticles and reduces their band gap, resulting in a significant improvement of the photocatalytic performance of the composite mats under visible light irradiation. Upon the appropriate pretreatment and visible light irradiation, we prove that the most efficient mats, with both ceria nanoparticles and Pt nanoclusters, present a degradation efficiency of methylene blue of 70% and a photodegradation rate improved by about five times compared to the ceria loaded samples, without Pt. The present results bring a significant improvement of the photocatalytic performance of polymeric nanocomposite fibrous systems under visible light irradiation, for efficient wastewater treatment applications.
RESUMO
Gravity alterations elicit complex and mostly detrimental effects on biological systems. Among these, a prominent role is occupied by oxidative stress, with consequences for tissue homeostasis and development. Studies in altered gravity are relevant for both Earth and space biomedicine, but their implementation using whole organisms is often troublesome. Here we utilize planarians, simple worm model for stem cell and regeneration biology, to characterize the pathogenic mechanisms brought by artificial gravity alterations. In particular, we provide a comprehensive evaluation of molecular responses in intact and regenerating specimens, and demonstrate a protective action from the space-apt for nanotechnological antioxidant cerium oxide nanoparticles.
Assuntos
Cério , Gravidade Alterada , Nanopartículas/química , Planárias/metabolismo , Regeneração/efeitos dos fármacos , Animais , Cério/química , Cério/farmacologiaRESUMO
Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb pattern and its unique and amazing properties make it suitable for a wide range of applications ranging from electronic devices to food packaging. However, the biocompatibility of graphene is dependent on the complex interplay of its several physical and chemical properties. The main aim of the present study is to highlight the importance of integrating different characterization techniques to describe the potential release of airborne graphene flakes in a graphene processing and production research laboratory. Specifically, the production and processing (i.e., drying) of few-layer graphene (FLG) through liquid-phase exfoliation of graphite are analysed by integrated characterization techniques. For this purpose, the exposure measurement strategy was based on the multi-metric tiered approach proposed by the Organization for Economic Cooperation and Development (OECD) via integrating high-frequency real-time measurements and personal sampling. Particle number concentration, average diameter and lung deposition surface area time series acquired in the worker's personal breathing zone (PBZ) were compared simultaneously to background measurements, showing the potential release of FLG. Then, electron microscopy techniques and Raman spectroscopy were applied to characterize particles collected by personal inertial impactors to investigate the morphology, chemical composition and crystal structure of rare airborne graphene flakes. The gathered information provides a valuable basis for improving risk management strategies in research and industrial laboratories.
RESUMO
Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.