Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Lett ; 14(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743266

RESUMO

The ecological dynamics of cities are influenced not only by geophysical and biological factors, but also by aspects of human society. In cities around the world, a pattern of higher biodiversity in affluent neighbourhoods has been termed 'the luxury effect'. The luxury effect has been found globally regarding plant diversity and canopy or vegetative cover. Fewer studies have considered the luxury effect and animals, yet it has been recognized in the distributions of birds, bats, lizards and indoor arthropods. Higher socioeconomic status correlates with higher biodiversity resulting from many interacting factors-the creation and maintenance of green space on private and public lands, the tendency of both humans and other species to favour environmentally desirable areas, while avoiding environmental burdens, as well as enduring legacy effects. The luxury effect is amplified in arid cities and as neighbourhoods age, and reduced in tropical areas. Where the luxury effect exists, benefits of urban biodiversity are unequally distributed, particularly in low-income neighbourhoods with higher minority populations. The equal distribution of biodiversity in cities, and thus the elimination of the luxury effect, is a worthy societal goal.


Assuntos
Biodiversidade , Fatores Socioeconômicos , Animais , Cidades , Ecossistema , Humanos , Plantas
2.
Glob Chang Biol ; 22(3): 1046-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26663622

RESUMO

Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.


Assuntos
Abelhas/fisiologia , Ecossistema , Polinização , Agricultura , Animais , California , Cidades , Estações do Ano
3.
Biol Lett ; 12(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27484644

RESUMO

In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements.


Assuntos
Artrópodes , Animais , Cidades , Ecossistema
4.
PeerJ ; 7: e6879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31106074

RESUMO

Cities around the world have converged on structural and environmental characteristics that exert similar eco-evolutionary pressures on local communities. However, evaluating how urban biodiversity responds to urban intensification remains poorly understood because of the challenges in capturing the diversity of a range of taxa within and across multiple cities from different types of urbanization. Here we utilize a growing resource-citizen science data. We analyzed 66,209 observations representing 5,209 species generated by the City Nature Challenge project on the iNaturalist platform, in conjunction with remote sensing (NLCD2011) environmental data, to test for urban biotic homogenization at increasing levels of urban intensity across 14 metropolitan cities in the United States. Based on community composition analyses, we found that while similarities occur to an extent, urban biodiversity is often much more a reflection of the taxa living locally in a region. At the same time, the communities found in high-intensity development were less explained by regional context than communities from other land cover types were. We also found that the most commonly observed species are often shared between cities and are non-endemic and/or have a distribution facilitated by humans. This study highlights the value of citizen science data in answering questions in urban ecology.

5.
Sci Rep ; 7(1): 15347, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127355

RESUMO

The indoor biome is a novel habitat which recent studies have shown exhibit not only high microbial diversity, but also high arthropod diversity. Here, we analyze findings from a survey of 50 houses (southeastern USA) within the context of additional survey data concerning house and room features, along with resident behavior, to explore how arthropod diversity and community composition are influenced by physical aspects of rooms and their usage, as well as the lifestyles of human residents. We found that indoor arthropod diversity is strongly influenced by access to the outdoors and carpeted rooms hosted more types of arthropods than non-carpeted rooms. Arthropod communities were similar across most room types, but basements exhibited more unique community compositions. Resident behavior such as house tidiness, pesticide usage, and pet ownership showed no significant influence on arthropod community composition. Arthropod communities across all rooms in houses exhibit trophic structure-with both generalized predators and scavengers included in the most frequently found groups. These findings suggest that indoor arthropods serve as a connection to the outdoors, and that there is still much yet to be discovered about their impact on indoor health and the unique ecological dynamics within our homes.


Assuntos
Artrópodes/fisiologia , Biodiversidade , Ecossistema , Animais , Estados Unidos
6.
PeerJ ; 4: e1582, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26819844

RESUMO

Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

7.
PeerJ ; 3: e1141, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26290795

RESUMO

Global change has led to shifts in phenology, potentially disrupting species interactions such as plant-pollinator relationships. Advances in remote sensing techniques allow one to detect vegetation phenological diversity between different land use types, but it is not clear how this translates to other communities in the ecosystem. Here, we investigated the phenological diversity of the vegetation across a human-altered landscape including urban, agricultural, and natural land use types. We found that the patterns of change in the vegetation indices (EVI and NDVI) of human-altered landscapes are out of synchronization with the phenology in neighboring natural California grassland habitat. Comparing these findings to a spatio-temporal pollinator distribution dataset, EVI and NDVI were significant predictors of total bee abundance, a relationship that improved with time lags. This evidence supports the importance of differences in temporal dynamics between land use types. These findings also highlight the potential to utilize remote sensing data to make predictions for components of biodiversity that have tight vegetation associations, such as pollinators.

8.
PLoS One ; 9(1): e86357, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466050

RESUMO

Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis), a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1) rates of bee visitation, 2) viable seed set, and 3) the efficiency of pollination (relationship between bee visitation and seed set). We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services.


Assuntos
Agricultura , Abelhas/fisiologia , Centaurea/fisiologia , Cidades , Ecossistema , Polinização/fisiologia , Animais , California , Geografia , Atividades Humanas , Humanos , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA