Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Urol ; 19(1): 62, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288793

RESUMO

BACKGROUND: Porcine urinary bladders are widely used for uro-pharmacological examinations due to their resemblance to the human organ. However, characterisations of the porcine urothelium at the molecular level are scarce up to now. As it has become clear over the last years that this tissue plays an important role in the signaling-pathways of the bladder, we examined whether the transporter and receptor pattern (with focus on the transmitter acetylcholine) is comparable to the human urothelium. With regard to in vitro studies, we also investigated if there is a difference between the native tissue and cultivated primary urothelial cells in culture. METHODS: Urothelium from German Landrace and Göttingen Minipig bladders was collected. One part of the German Landrace tissue was used for cultivation, and different passages of the urothelial cells were collected. The actual mRNA expression of different transporters and receptors was examined via quantitative real-time PCR. These included the vesicular acetylcholine transporter (VAChT), the choline acetyl transferase (ChAT), organic cation transporters 1-3 (OCT1-3), organic anion transporting polypeptide 1A2 (OATP1A2), P-glycoprotein (ABCB1), the carnitine acetyl-transferase (CarAT), as well as the muscarinic receptors 1-5 (M1-5). RESULTS: There is a strong qualitative resemblance between the human and the porcine urothelium with regard to the investigated cholinergic receptors, enzymes and transporters. CarAT, OCT1-3, OATP1A2 and ABCB1 could be detected in the urothelium of both pig races. Moreover, all 5 M-receptors were prominent with an emphasis on M2 and M3. VAChT and ChAT could not be detected at all. Cultures of the derived urothelial cells showed decreased expression of all targets apart from ABCB1 and CarAT. CONCLUSIONS: Based on the expression pattern of receptors, transporters and enzymes of the cholinergic system, the porcine urinary bladder can be regarded as a good model for pharmacological studies. However, cultivation of primary urothelial cells resulted in a significant drop in mRNA expression of the targets. Therefore, it can be concluded that the intact porcine urothelium, or the whole pig bladder, may be appropriate models for studies with anticholinergic drugs, whereas cultivated urothelial cells have some limitation due to significant changes in the expression levels of relevant targets.


Assuntos
Neurônios Colinérgicos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Receptores Muscarínicos/metabolismo , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Animais , Células Cultivadas , Transportadores de Ânions Orgânicos/genética , Receptores Muscarínicos/genética , Especificidade da Espécie , Suínos , Porco Miniatura , Bexiga Urinária/citologia , Urotélio/citologia
2.
Biomed Eng Online ; 17(1): 95, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005629

RESUMO

BACKGROUND: Continuous non-invasive urinary bladder volume measurement (cystovolumetry) would allow better management of urinary tract disease. Electrical impedance tomography (EIT) represents a promising method to overcome the limitations of non-continuous ultrasound measurements. The aim of this study was to compare the measurement accuracy of EIT to standard ultrasound in healthy volunteers. METHODS: For EIT of the bladder a commercial device (Goe MF II) was used with 4 different configurations of 16 standard ECG electrodes attached to the lower abdomen of healthy participants. To estimate maximum bladder capacity (BCmax) and residual urine (RU) two ultrasound methods (US-Ellipsoid and US-L × W × H) and a bedside bladder scanner (BS), were performed at the point of urgency and after voiding. For volume reference, BCmax and RU were validated by urine collection in a weight measuring pitcher. The global impedance method was used offline to estimate BCmax and RU from EIT. RESULTS: The mean error of US-Ellipsoid (37 ± 17%) and US-L × W × H (36 ± 15%) and EIT (32 ± 18%) showed no significant differences in the estimation of BCmax (mean 743 ± 200 ml) normalized to pitcher volumetry. BS showed significantly worse accuracy (55 ± 9%). Volumetry of RU (mean 152.1 ± 64 ml) revealed comparable higher errors for both EIT (72 ± 58%) and BS (63 ± 24%) compared to US-Ellipsoid (54 ± 25%). In case of RU, EIT accuracy is dependent on electrode configuration, as the Stripes (41 ± 25%) and Matrix (38 ± 27%) configurations revealed significantly superior accuracy to the 1 × 16 (116 ± 62%) configuration. CONCLUSIONS: EIT-cystovolumetry compares well with ultrasound techniques. For estimation of RU, the selection of the EIT electrode configuration is important. Also, the development of an algorithm should consider the impact of movement artefacts. Finally, the accuracy of non-invasive ultrasound accepted as gold standard of cystovolumetry should be reconsidered.


Assuntos
Voluntários Saudáveis , Tomografia , Bexiga Urinária/anatomia & histologia , Bexiga Urinária/diagnóstico por imagem , Adulto , Impedância Elétrica , Feminino , Humanos , Masculino , Tamanho do Órgão , Ultrassonografia
3.
J Transl Med ; 15(1): 3, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28049497

RESUMO

BACKGROUND: The repair of urinary bladder tissue is a necessity for tissue loss due to cancer, trauma, or congenital abnormalities. Use of intestinal tissue is still the gold standard in the urological clinic, which leads to new problems and dysfunctions like mucus production, stone formation, and finally malignancies. Therefore, the use of artificial, biologically derived materials is a promising step towards the augmentation of this specialised tissue. The aim of this study was to investigate potential bladder wall repair by two collagen scaffold prototypes, OptiMaix 2D and 3D, naïve and seeded with autologous vesical cells, as potential bladder wall substitute material in a large animal model. METHODS: Six Göttingen minipigs underwent cystoplastic surgery for tissue biopsy and cell isolation followed by implantation of unseeded scaffolds. Six weeks after the first operation, scaffolds seeded with the tissue cultured autologous urothelial and detrusor smooth muscle cells were implanted into the bladder together with additional unseeded scaffolds for comparison. Cystography and bladder ultrasound were performed to demonstrate structural integrity and as leakage test of the implantation sites. Eighteen, 22, and 32 weeks after the first operation, two minipigs respectively were sacrificed and the urinary tract was examined via different (immunohistochemical) staining procedures and the usage of two-photon laser scanning microscopy. RESULTS: Both collagen scaffold prototypes in vivo had good ingrowth capacity into the bladder wall including a quick lining with urothelial cells. The ingrowth of detrusor muscle tissue, along with the degradation of the scaffolds, could also be observed throughout the study period. CONCLUSIONS: We could show that the investigated collagen scaffolds OptiMaix 2D and 3D are a potential material for bladder wall substitution. The material has good biocompatible properties, shows a good cell growth of autologous cells in vitro, and a good integration into the present bladder tissue in vivo.


Assuntos
Colágeno/química , Alicerces Teciduais/química , Bexiga Urinária/cirurgia , Animais , Feminino , Fluorescência , Imuno-Histoquímica , Implantes Experimentais , Modelos Animais , Miócitos de Músculo Liso/citologia , Suínos , Porco Miniatura , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/fisiologia , Micção , Urotélio/citologia
4.
J Biomed Mater Res A ; 102(4): 999-1007, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23620218

RESUMO

Generation of supporting structures, which guide cell growth, is a challenging task in the field of tissue engineering. Cell guidance properties of a scaffold are important in the field of neuronal regeneration. Those guiding structures can provide guidance just by mechanical stimulus or by chemical stimuli like cell signaling molecules. For an enhanced guidance, chemical gradients are under investigation. With this study, we show that ultraviolet laser irradiation is a useful tool to activate polymer surfaces with a high temporal and spatial resolution. We demonstrated that poly(methyl methacrylate) (PMMA) and poly-ε-caprolactone (PCL) can be locally activated and functionalized with amine groups that can be used for immobilization of arginine-glycine-aspartic acid (RGD) peptide. The immobilized RGD was detected by neuronal B35 cells. By defined pulse accumulation functionalization density on the surface can be varied for the generation of gradients. We demonstrated that PMMA and PCL have different process windows for functionalization. Although PMMA has a very small process window for activation, PCL allows the generation of stepwise functionalization. The presented technology can help to develop assays for the analysis of cell migration and neuronal regeneration due to flexible patterning easily realized by changing the irradiation parameters.


Assuntos
Materiais Biocompatíveis/efeitos da radiação , Lasers , Polímeros/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular Tumoral , Fluoresceína-5-Isotiocianato/química , Oligopeptídeos/química , Poliésteres/efeitos da radiação , Polietilenoimina/efeitos da radiação , Polimetil Metacrilato/efeitos da radiação , Ratos , Propriedades de Superfície/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA