Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299239

RESUMO

Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERß) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERß in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-ß estradiol (E2). Thus, the direct involvement of mtERß in antioxidant and anti-apoptotic activities is documented, rendering mtERß a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.


Assuntos
Receptor beta de Estrogênio/metabolismo , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor beta de Estrogênio/genética , Estrogênios/metabolismo , Estrogênios/farmacologia , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/fisiologia , Células-Tronco Neurais/metabolismo , Neuroblastoma/genética , Neurônios/metabolismo , Neurônios/fisiologia , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptores de Estrogênio/metabolismo
2.
Biomedicines ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38137403

RESUMO

Τransforming growth factor ß1 (TGF-ß1) comprises a key regulator protein in many cellular processes, including in vivo chondrogenesis. The treatment of human dental pulp stem cells, separately, with Leu83-Ser112 (C-terminal domain of TGF-ß1), as well as two very short peptides, namely, 90-YYVGRKPK-97 (peptide 8) and 91-YVGRKP-96 (peptide 6) remarkably enhanced the chondrogenic differentiation capacity in comparison to their full-length mature TGF-ß1 counterpart either in monolayer cultures or 3D scaffolds. In 3D scaffolds, the reduction of the elastic modulus and viscous modulus verified the production of different amounts and types of ECM components. Molecular dynamics simulations suggested a mode of the peptides' binding to the receptor complex TßRII-ALK5 and provided a possible structural explanation for their role in inducing chondrogenesis, along with endogenous TGF-ß1. Further experiments clearly verified the aforementioned hypothesis, indicating the signal transduction pathway and the involvement of TßRII-ALK5 receptor complex. Real-time PCR experiments and Western blot analysis showed that peptides favor the ERK1/2 and Smad2 pathways, leading to an articular, extracellular matrix formation, while TGF-ß1 also favors the Smad1/5/8 pathway which leads to the expression of the metalloproteinases ADAMTS-5 and MMP13 and, therefore, to a hypertrophic chondrocyte phenotype. Taken together, the two short peptides, and, mainly, peptide 8, could be delivered with a scaffold to induce in vivo chondrogenesis in damaged articular cartilage, constituting, thus, an alternative therapeutic approach for osteoarthritis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA