Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Analyst ; 149(7): 2138-2146, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38436402

RESUMO

Using a precise electrochemical quartz crystal microbalance (EQCM), it was shown that electrogravimetry can be carried out with microelectrode arrays (MEAs). MEAs were prepared on the resonator surface by coating it with a thin polymer layer containing holes, where the holes constitute the microelectrodes. The preparation procedures, their benefits, and their limitations are discussed. Microelectrode-based electrogravimetry is challenging because the reduced active area reduces the QCM signal. It is still feasible. This work is limited to linear voltage ramps (as opposed to steps). The processes chosen for demonstration were the electrodeposition/stripping of copper and the redox cycling of methyl viologen dichloride (MVC). The current trace often showed microelectrodic behavior, depending on the sweep rate. For the case of copper deposition, the mass transfer rate was proportional to the electric current. For the case of MVC, the electric current showed a plateau at the ends of the current-voltage diagram, but the mass transfer rate did not change. The difference can be explained by adsorption and desorption going into saturation at the two ends of the voltage range. Based on whether or not a microelectrodic gravimetric signal is seen, it can be stated whether the mass transfer is closely linked to the current. Further advantages of the microelectrode-based EQCM are an improved access to fast processes, reduced effects of double layer recharging, and the possibility to work at a low electrolyte support.

2.
Analyst ; 148(8): 1887-1897, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36960957

RESUMO

Using a quartz crystal microbalance with dissipation monitoring (QCM-D), the complex high-frequency viscosity,  = η' - iη'', of concentrated solutions of a monoclonal antibody (mAb) was studied with respect to its dependence on temperature, T, and concentration, c. Lysozyme and bovine serum albumin (BSA) served as reference materials. Viscoelasticity was found for the mAb solution, while the reference materials behaved like Newtonian liquids. The QCM-D probes the solution's dynamics on the time scale of a few tens of nanoseconds. The processes of relaxation accessed with the QCM-D are not amenable to standard viscometry. The inverse loss tangent at 15 MHz (equal to η''/η' at 15 MHz, quantifying the elastic contribution to the oscillatory stress) was between 0.1 and 0.5 for the concentrated mAb solutions. It decreased with increasing temperature and decreasing pH. Activation energies of viscous flow, Ea,η, were derived from the functions η'(T). Ea,η was found to be higher for the mAb solutions than for water. No such increase was found for the reference materials. This difference evidences protein-protein interactions (PPIs) between the mAb molecules, which do not exist in the same way for lysozyme and BSA. The excipients citrate and arginine did not noticeably affect the mAb's high-frequency viscosity as determined with the QCM-D.


Assuntos
Anticorpos Monoclonais , Muramidase , Anticorpos Monoclonais/química , Temperatura , Viscosidade , Ligação Proteica
3.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36772387

RESUMO

Quartz crystal microbalance with dissipation monitoring (QCM-D) is a well-established technique for studying soft films. It can provide gravimetric as well as nongravimetric information about a film, such as its thickness and mechanical properties. The interpretation of sets of overtone-normalized frequency shifts, ∆f/n, and overtone-normalized shifts in half-bandwidth, ΔΓ/n, provided by QCM-D relies on a model that, in general, contains five independent parameters that are needed to describe film thickness and frequency-dependent viscoelastic properties. Here, we examine how noise inherent in experimental data affects the determination of these parameters. There are certain conditions where noise prevents the reliable determination of film thickness and the loss tangent. On the other hand, we show that there are conditions where it is possible to determine all five parameters. We relate these conditions to the mathematical properties of the model in terms of simple conceptual diagrams that can help users understand the model's behavior. Finally, we present new open source software for QCM-D data analysis written in Python, PyQTM.

4.
Anal Chem ; 94(28): 10227-10233, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35802635

RESUMO

Square-wave voltammetry on electrolytes containing reversible redox pairs in solution was complemented by acoustic microgravimetry, where multifrequency lock-in amplification provides for a time resolution of 2.5 ms and a frequency resolution after accumulation of 12 mHz. The instrument operates similar to a quartz crystal microbalance with dissipation monitoring (QCM-D). The use of square-waves rather than linear ramps makes the analysis more transparent because it reduces the contribution of non-Faraday currents. Also, square-wave electrogravimetry determines the rates of mass transfer with much better sensitivity than its counterpart based on linear voltage ramps. The shifts of frequency and bandwidth are in agreement with the Sauerbrey prediction, meaning that the overtone-normalized frequency shifts, Δf/n, are similar on the different overtones and that the shifts in half bandwidth, ΔΓ, are smaller than the shifts in frequency. Small deviations from the Sauerbrey prediction presumably result from the softness of the adsorbed layer. Because the response time of the QCM signals is much longer than the RC time of double layer recharging as determined with electrochemical impedance spectroscopy (EIS), interpretation in terms of adsorption and desorption is more plausible than interpretation in terms of changed viscosity in the diffuse double layer. Ions of methyl viologen (MV) were found to adsorb to the electrode surface more strongly in the state with a single charge than in the fully oxidized state carrying two charges. The difference in apparent thickness between the oxidized and the reduced state was up to 2 nm, depending on concentration. The gravimetric results obtained on flavin adenine dinucleotide (FAD) depended on pH. At neutral pH, adsorption was largest close to the redox potential. Presumably, the adsorbed molecules are semiquinones, that is, are the intermediates of the underlying two-electron process.


Assuntos
Eletrólitos , Técnicas de Microbalança de Cristal de Quartzo , Adsorção , Íons , Oxirredução
5.
Analyst ; 146(7): 2160-2171, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33543737

RESUMO

Changes in the viscoelasticity of the electric double layer following steps in electrode potential were studied with an electrochemical quartz crystal microbalance (EQCM). The overtone scaling was the same as in gravimetry (-Δf/n≈ const with Δf the frequency shift and n the overtone order). Changes in half-bandwidth were smaller than changes in frequency. This Sauerbrey-type behaviour can be explained with either adsorption/desorption or with changes of the (Newtonian) viscosity of the diffuse double layer. While the QCM data alone cannot distinguish between these two processes, independent information supports the explanation in terms of double layer viscosity. Firstly, the magnitudes of the frequency response correlated with the expected changes of the viscosity-density product in the diffuse double layer. With regard to viscosity, these expectations are based on the viscosity B-coefficients as employed in the Jones-Dole equation. Expected changes in density were estimated from the densities of the respective salts. Secondly, the explanation in terms of liquid-like response matches the kinetic data. The response times of frequency and bandwidth were similar to the response times of the charge as determined with electrochemical impedance spectroscopy (EIS). Rearrangements in the Helmholtz layer should have been slower, given this layer's rigidity. Kinetic information obtained with a QCM can aid the understanding of processes at the electrode-electrolyte interface.

6.
Analyst ; 146(19): 6005-6013, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34505583

RESUMO

Using a fast electrochemical quartz crystal microbalance (EQCM), zwitterionic electrolytes were studied with regard to changes of resonance frequency and resonance bandwidth after the electrode potential was switched. In addition to a fast change of frequency (within milliseconds), a further, slower process with opposite direction is observed. Both the fast and the slow process change sign when the pH is varied across the isoelectric point (pI). The fast process can be attributed to double layer recharging. Its characteristic time is slightly larger than the charge response time (the RC-time) as inferred from electrochemical impedance spectroscopy (EIS). With regard to the slow process, amino acids with moderate concentration behave markedly different from concentrated solutions of proteins. For amino acids, the slow process is larger in amplitude than the fast process and the QCM response is Sauerbrey-like. The shift in half bandwidth is smaller than the shift in frequency and the overtone-normalized frequency shifts agree between overtones (-Δf/n ≈ const. with n the overtone order). This can be explained with a viscosity change in the diffuse double layer. Independent measurements show that the viscosities of these electrolytes are higher than the average in a pH range around the pI. Presumably, the slow process reflects a rearrangement of molecules after the net charge on the molecule has increased or decreased, changing the degree of dipolar coupling and, in consequence, the viscosity. For concentrated solutions of bovine serum albumin (BSA), the QCM response does not follow Sauerbrey behaviour, which can be explained with viscoelasticity and viscoelastic dispersion. The slow process lets the frequency and the bandwidth relax towards a baseline, which is the same for jumps to more positive and to more negative potentials. Presumably, the slow process in this case is caused by a reorientation of molecules inside the Helmholtz layer, such that they screen the electric field more efficiently than immediately after the voltage jump.


Assuntos
Eletrólitos , Técnicas de Microbalança de Cristal de Quartzo , Eletrodos , Concentração de Íons de Hidrogênio , Viscosidade
7.
Sensors (Basel) ; 21(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067761

RESUMO

The response of the quartz crystal microbalance (QCM, also: QCM-D for "QCM with Dissipation monitoring") to loading with a diverse set of samples is reviewed in a consistent frame. After a brief introduction to the advanced QCMs, the governing equation (the small-load approximation) is derived. Planar films and adsorbates are modeled based on the acoustic multilayer formalism. In liquid environments, viscoelastic spectroscopy and high-frequency rheology are possible, even on layers with a thickness in the monolayer range. For particulate samples, the contact stiffness can be derived. Because the stress at the contact is large, the force is not always proportional to the displacement. Nonlinear effects are observed, leading to a dependence of the resonance frequency and the resonance bandwidth on the amplitude of oscillation. Partial slip, in particular, can be studied in detail. Advanced topics include structured samples and the extension of the small-load approximation to its tensorial version.

8.
Sensors (Basel) ; 20(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092072

RESUMO

A quartz crystal microbalance (QCM) is described, which simultaneously determines resonance frequency and bandwidth on four different overtones. The time resolution is 10 milliseconds. This fast, multi-overtone QCM is based on multi-frequency lockin amplification. Synchronous interrogation of overtones is needed, when the sample changes quickly and when information on the sample is to be extracted from the comparison between overtones. The application example is thermal inkjet-printing. At impact, the resonance frequencies change over a time shorter than 10 milliseconds. There is a further increase in the contact area, evidenced by an increasing common prefactor to the shifts in frequency, Δf, and half-bandwidth, ΔΓ. The ratio ΔΓ/(-Δf), which quantifies the energy dissipated per time and unit area, decreases with time. Often, there is a fast initial decrease, lasting for about 100 milliseconds, followed by a slower decrease, persisting over the entire drying time (a few seconds). Fitting the overtone dependence of Δf(n) and ΔΓ(n) with power laws, one finds power-law exponents of about 1/2, characteristic of semi-infinite Newtonian liquids. The power-law exponents corresponding to Δf(n) slightly increase with time. The decrease of ΔΓ/(-Δf) and the increase of the exponents are explained by evaporation and formation of a solid film at the resonator surface.

9.
Platelets ; 28(5): 509-517, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27819526

RESUMO

The volatile transmitter hydrogen sulfide (H2S) is known for its various functions in vascular biology. This study evaluates the effect of the H2S-donor GYY4137 (GYY) on thrombus stability and microvascular thrombolysis. Human whole blood served for all in vitro studies and was analyzed in a resting state, after stimulation with thrombin-receptor activating peptide (TRAP) and after incubation with 10 or 30 mM GYY or its vehicle DMSO following TRAP-activation, respectively. As a marker for thrombus stability, platelet-leukocyte aggregation was assessed using flow cytometry after staining of human whole blood against CD62P and CD45, respectively. Furthermore, morphology and quantity of platelet-leukocyte aggregation were studied by means of scanning electron microscopy (scanning EM). Therefore, platelets were stained for CD62P followed by immuno gold labeling. In vivo, the dorsal skinfold chamber preparation was performed for light/dye induction of thrombi in arterioles and venules using intravital fluorescence microscopy. Thrombolysis was assessed 10 and 22 h after thrombus induction and treatment with the vehicle, GYY, or recombinant tissue plasminogen activator (rtPA). Flow cytometry revealed an increase of CD62P/CD45 positive aggregates after TRAP stimulation of human whole blood, which was significantly reduced by preincubation with 30 mM GYY. Scanning EM additionally showed a reduced platelet-leukocyte aggregation and a decreased leukocyte count within the aggregates after preincubation with GYY compared to TRAP stimulation alone. Further on, morphological signs of platelet activation were found markedly reduced upon treatment with GYY. In mice, both GYY and rtPA significantly accelerated arteriolar and venular thrombolysis compared to the vehicle control. In conclusion, GYY impairs thrombus stability by reducing platelet-leukocyte aggregation and thereby facilitates endogenous thrombolysis.


Assuntos
Plaquetas/metabolismo , Sulfeto de Hidrogênio/farmacologia , Leucócitos/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Terapia Trombolítica , Adulto , Arteríolas/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Morfolinas/farmacologia , Compostos Organotiofosforados/farmacologia , Selectina-P/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo , Vênulas/metabolismo
10.
Biointerphases ; 15(2): 021004, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208731

RESUMO

An electrochemical quartz crystal microbalance is described, which achieves a time resolution down to 100 µs. Accumulation and averaging over a few hours bring the noise down to about 30 mHz. The application examples are pH-driven viscosity changes in albumin solutions. The pH was switched with the electrode potential. The characteristic response time is in the millisecond range. The focus is on experimental aspects as well as advantages and limitations of the technique.


Assuntos
Eletricidade , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Concentração de Íons de Hidrogênio , Soluções , Fatores de Tempo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA