Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 146(5): 412-426, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35862076

RESUMO

BACKGROUND: The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS: Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS: Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS: Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.


Assuntos
Miócitos Cardíacos , Condicionamento Físico Animal , Animais , Calcineurina/metabolismo , Humanos , Lactente , Camundongos , Miócitos Cardíacos/citologia , Timidina/metabolismo
2.
Circ Res ; 127(5): 631-646, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32418505

RESUMO

RATIONALE: Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE: To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS: We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS: CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.


Assuntos
Cardiomegalia Induzida por Exercícios , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcriptoma
3.
Arterioscler Thromb Vasc Biol ; 36(9): 1854-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27386938

RESUMO

OBJECTIVE: S100A6, a member of the S100 protein family, has been described as relevant for cell cycle entry and progression in endothelial cells. The molecular mechanism conferring S100A6's proliferative actions, however, remained elusive. APPROACH AND RESULTS: Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating endothelial cells in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6-silenced human endothelial cells stimulated with vascular endothelial growth factor A. This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 and protein inhibitors of activated signal transducers and activators of transcription as key components of the link between S100A6 and signal transducers and activators of transcription 1. CONCLUSIONS: Given the important role of coordinated endothelial cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, signal transducers and activators of transcription 1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proliferação de Células , Células Endoteliais/metabolismo , Proteínas S100/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Biologia Computacional , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Masculino , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Reepitelização , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sus scrofa , Fatores de Tempo , Transcriptoma , Transfecção , Fator A de Crescimento do Endotélio Vascular/farmacologia , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
4.
Circ Res ; 112(1): 66-78, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23048072

RESUMO

RATIONALE: Mice lacking the EF-hand Ca2+ sensor S100A1 display endothelial dysfunction because of distorted Ca2+ -activated nitric oxide (NO) generation. OBJECTIVE: To determine the pathophysiological role of S100A1 in endothelial cell (EC) function in experimental ischemic revascularization. METHODS AND RESULTS: Patients with chronic critical limb ischemia showed almost complete loss of S100A1 expression in hypoxic tissue. Ensuing studies in S100A1 knockout (SKO) mice subjected to femoral artery resection unveiled insufficient perfusion recovery and high rates of autoamputation. Defective in vivo angiogenesis prompted cellular studies in SKO ECs and human ECs, with small interfering RNA-mediated S100A1 knockdown demonstrating impaired in vitro and in vivo proangiogenic properties (proliferation, migration, tube formation) and attenuated vascular endothelial growth factor (VEGF)-stimulated and hypoxia-stimulated endothelial NO synthase (eNOS) activity. Mechanistically, S100A1 deficiency compromised eNOS activity in ECs by interrupted stimulatory S100A1/eNOS interaction and protein kinase C hyperactivation that resulted in inhibitory eNOS phosphorylation and enhanced VEGF receptor-2 degradation with attenuated VEGF signaling. Ischemic SKO tissue recapitulated the same molecular abnormalities with insufficient in vivo NO generation. Unresolved ischemia entailed excessive VEGF accumulation in SKO mice with aggravated VEGF receptor-2 degradation and blunted in vivo signaling through the proangiogenic phosphoinositide-3-kinase/Akt/eNOS cascade. The NO supplementation strategies rescued defective angiogenesis and salvaged limbs in SKO mice after femoral artery resection. CONCLUSIONS: Our study shows for the first time downregulation of S100A1 expression in patients with critical limb ischemia and identifies S100A1 as critical for EC function in postnatal ischemic angiogenesis. These findings link its pathological plasticity in critical limb ischemia to impaired neovascularization, prompting further studies to probe the microvascular therapeutic potential of S100A1.


Assuntos
Células Endoteliais/enzimologia , Isquemia/enzimologia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas S100/deficiência , Idoso , Idoso de 80 Anos ou mais , Animais , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Feminino , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Isquemia/tratamento farmacológico , Isquemia/genética , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Fluxo Sanguíneo Regional , Proteínas S100/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Cardiovasc Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918884

RESUMO

Cardiac aging is an intricate and multifaceted process with considerable impact on public health, especially given the global demographic shift towards aged populations. This review discusses structural, cellular and functional changes associated with cardiac aging and heart failure with preserved ejection fraction (HFpEF). Key molecular mediators are considered within the framework of the established hallmarks of aging, with particular attention to promising therapeutic candidates. We further delineate the differential impacts of aging on cardiac structure and function in men and women, addressing hormonal and chromosomal influences. The protective and mitigating effects of exercise in cardiac aging and HFpEF in particular are discussed, as an inspiration for the identification of pathways that mitigate biological aging. We also emphasize how much remains to be learned and the importance of these efforts in enhancing the cardiac health of aging populations worldwide.

7.
Cardiovasc Res ; 120(3): 262-272, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38084908

RESUMO

AIMS: Physiological cardiac hypertrophy occurs in response to exercise and can protect against pathological stress. In contrast, pathological hypertrophy occurs in disease and often precedes heart failure. The cardiac pathways activated in physiological and pathological hypertrophy are largely distinct. Our prior work demonstrated that miR-222 increases in exercised hearts and is required for exercise-induced cardiac hypertrophy and cardiomyogenesis. Here, we sought to define the role of miR-222 in pathological hypertrophy. METHODS AND RESULTS: We found that miR-222 also increased in pathological hypertrophy induced by pressure overload. To assess its functional significance in this setting, we generated a miR-222 gain-of-function model through cardiac-specific constitutive transgenic miR-222 expression (TgC-miR-222) and used locked nucleic acid anti-miR specific for miR-222 to inhibit its effects. Both gain- and loss-of-function models manifested normal cardiac structure and function at baseline. However, after transverse aortic constriction (TAC), miR-222 inhibition accelerated the development of pathological hypertrophy, cardiac dysfunction, and heart failure. Conversely, miR-222-overexpressing mice had less pathological hypertrophy after TAC, as well as better cardiac function and survival. We identified p53-up-regulated modulator of apoptosis, a pro-apoptotic Bcl-2 family member, and the transcription factors, Hmbox1 and nuclear factor of activated T-cells 3, as direct miR-222 targets contributing to its roles in this context. CONCLUSION: While miR-222 is necessary for physiological cardiac growth, it inhibits cardiac growth in response to pressure overload and reduces adverse remodelling and cardiac dysfunction. These findings support the model that physiological and pathological hypertrophy are fundamentally different. Further, they suggest that miR-222 may hold promise as a therapeutic target in pathological cardiac hypertrophy and heart failure.


Assuntos
Cardiopatias , Insuficiência Cardíaca , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Coração , Cardiopatias/patologia , Miócitos Cardíacos/metabolismo , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo
8.
JACC Basic Transl Sci ; 9(4): 535-552, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680954

RESUMO

Among its many cardiovascular benefits, exercise training improves heart function and protects the heart against age-related decline, pathological stress, and injury. Here, we focus on cardiac benefits with an emphasis on more recent updates to our understanding. While the cardiomyocyte continues to play a central role as both a target and effector of exercise's benefits, there is a growing recognition of the important roles of other, noncardiomyocyte lineages and pathways, including some that lie outside the heart itself. We review what is known about mediators of exercise's benefits-both those intrinsic to the heart (at the level of cardiomyocytes, fibroblasts, or vascular cells) and those that are systemic (including metabolism, inflammation, the microbiome, and aging)-highlighting what is known about the molecular mechanisms responsible.

9.
Sci Transl Med ; 16(743): eadi0077, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630848

RESUMO

Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Cardíaca , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Camundongos , Animais , Período Periparto , Placenta , Fatores de Transcrição
10.
Eur Heart J Open ; 3(2): oead034, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37090057

RESUMO

Aims: Although the share of women in cardiology in Germany is growing steadily, this does not translate into leadership positions. Medical societies play a crucial role in shaping the national and international medical and scientific environment. The German Cardiac Society (DGK) aims to serve the public discourse on gender-equity by systematic analysis of data on gender representation within the society and in Germany. Methods and results: We present gender disaggregated data collection of members, official organs, working groups, scientific meetings, as well as awards of the DGK based on anonymized exports from the DGK office as well as on data gathered from the DGK web page. From 2000 to 2020, the overall number of DGK members as well as the share of women increased (12.5% to 25.3%). In 2021, the share of women ranged from 40% to 50% in earlier career stages but was substantially lower at senior levels (23.9% of consulting/attending physicians, 7.1% of physicians-in-chief, 3.4% of directors). The share of women serving in DGK working groups had gained overall proportionality, but nuclei and speaker positions were largely held by men. Boards and project groups were predominantly represented by men as well. At the DGK-led scientific meetings, women contributed more often in junior relative to (invited) senior roles. Conclusion: Increasing numbers of women in cardiology and in the DGK over the past 20 years did not translate into the respective increase in representation of women in leadership positions. There is an urgent need to identify and, more importantly, to overcome barriers towards gender equity. Transparent presentation of society-related data is the first step for future targeted actions in this regard.

11.
BMJ Open ; 11(4): e045176, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820790

RESUMO

OBJECTIVE: Concerns have been raised that the COVID-19 pandemic has shifted research productivity to the disadvantage of women in academia, particularly in early career stages. In this study, we aimed to assess the pandemic's effect on women's COVID-19-related publishing over the first year of the pandemic. METHODS AND RESULTS: We compared the gender distribution of first authorships for 42 898 publications on COVID-19 from 1 February 2020 to 31 January 2021 to 483 232 publications appearing in the same journals during the same period the year prior. We found that the gender gap-the percentage of articles on which men versus women were first authors-widened by 14 percentage points during the COVID-19 pandemic, despite many pertinent research fields showing near equal proportions of men and women first authors publishing in the same fields before the pandemic. Longitudinal analyses revealed that the significant initial expansions of the gender gap began to trend backwards to expected values over time in many fields. As women may have been differentially affected depending on their geography, we also assessed the gender distribution of first authorships grouped by countries and geographical areas. While we observed a significant reduction of the shares of women first authors in almost all countries, longitudinal analyses confirmed a resolving trend over time. CONCLUSION: The reduction in women's COVID-19-related research output appears particularly concerning as many disciplines informing the response to the pandemic had near equal gender shares of first authorship in the year prior to the pandemic. The acute productivity drain with the onset of the pandemic magnifies deep-rooted obstacles on the way to gender equity in scientific contribution.


Assuntos
Autoria , COVID-19 , Publicações/estatística & dados numéricos , Fatores Sexuais , Bibliometria , Feminino , Humanos , Masculino , Pandemias , Publicações Periódicas como Assunto/estatística & dados numéricos , SARS-CoV-2 , Caracteres Sexuais
12.
Aging Cell ; 19(6): e13159, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441410

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age-related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24-30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age-related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.


Assuntos
Envelhecimento/genética , Ecocardiografia Doppler/métodos , Exercício Físico/fisiologia , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico/fisiologia , Animais , Humanos , Masculino , Camundongos , Fenótipo
14.
Nat Commun ; 9(1): 1659, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695718

RESUMO

Loss of cardiomyocytes is a major cause of heart failure, and while the adult heart has a limited capacity for cardiomyogenesis, little is known about what regulates this ability or whether it can be effectively harnessed. Here we show that 8 weeks of running exercise increase birth of new cardiomyocytes in adult mice (~4.6-fold). New cardiomyocytes are identified based on incorporation of 15N-thymidine by multi-isotope imaging mass spectrometry (MIMS) and on being mononucleate/diploid. Furthermore, we demonstrate that exercise after myocardial infarction induces a robust cardiomyogenic response in an extended border zone of the infarcted area. Inhibition of miR-222, a microRNA increased by exercise in both animal models and humans, completely blocks the cardiomyogenic exercise response. These findings demonstrate that cardiomyogenesis can be activated by exercise in the normal and injured adult mouse heart and suggest that stimulation of endogenous cardiomyocyte generation could contribute to the benefits of exercise.


Assuntos
Coração/fisiologia , Infarto do Miocárdio/reabilitação , Miócitos Cardíacos/fisiologia , Condicionamento Físico Animal/fisiologia , Regeneração , Animais , Proliferação de Células/genética , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Miocárdio/citologia , Cultura Primária de Células , Ratos
15.
JCI Insight ; 1(9)2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27430023

RESUMO

The mechanisms by which exercise mediates its multiple cardiac benefits are only partly understood. Prior comprehensive analyses of the cardiac transcriptional components and microRNAs dynamically regulated by exercise suggest that the CBP/p300-interacting protein CITED4 is a downstream effector in both networks. While CITED4 has documented functional consequences in neonatal cardiomyocytes in vitro, nothing is known about its effects in the adult heart. To investigate the impact of cardiac CITED4 expression in adult animals, we generated transgenic mice with regulated, cardiomyocyte-specific CITED4 expression. Cardiac CITED4 expression in adult mice was sufficient to induce an increase in heart weight and cardiomyocyte size with normal systolic function, similar to the effects of endurance exercise training. After ischemia-reperfusion, CITED4 expression did not change initial infarct size but mediated substantial functional recovery while reducing ventricular dilation and fibrosis. Forced cardiac expression of CITED4 also induced robust activation of the mTORC1 pathway after ischemic injury. Moreover, pharmacological inhibition of mTORC1 abrogated CITED4's effects in vitro and in vivo. Together, these data establish CITED4 as a regulator of mTOR signaling that is sufficient to induce physiologic hypertrophy at baseline and mitigate adverse ventricular remodeling after ischemic injury.

16.
Drug Discov Today ; 19(7): 1003-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24637046

RESUMO

Exercise is a well-established intervention for the prevention and treatment of cardiovascular disease. Increase in cardiomyocyte size is likely to be the central mechanism of exercise-induced cardiac growth, but recent research also supports a role for the generation of new cardiomyocytes as a contributor to physiological cardiac growth. Other cardiac cell types also respond to exercise. For example, endothelial cells are important for the regulation of large vessels and expansion of microvasculature in meeting demands of the growing heart. Cardiac fibroblasts are known to generate and respond to important signals from their environment, but their role in exercise is less well defined. Therefore, cardiac growth relies on complex, finely regulated and interdependent signaling pathways as well as cross-talk among cardiac cell types.


Assuntos
Exercício Físico/fisiologia , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Animais , Humanos , Transdução de Sinais/fisiologia
18.
PLoS One ; 8(11): e78684, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244340

RESUMO

The Ca(2+) sensor S100A1 is essential for proper endothelial cell (EC) nitric oxide (NO) synthase (eNOS) activation. S100A1 levels are greatly reduced in primary human microvascular ECs subjected to hypoxia, rendering them dysfunctional. However mechanisms that regulate S100A1 levels in ECs are unknown. Here we show that ECs transfected with a S100A1-3' untranslated region (UTR) luciferase reporter construct display significantly reduced gene expression when subjected to low oxygen levels or chemical hypoxia. Bioinformatic analysis suggested that microRNA -138 (MiR-138) could target the 3'UTR of S100A1. Patients with critical limb ischemia (CLI) or mice subjected to femoral artery resection (FAR) displayed increased MiR-138 levels and decreased S100A1 protein expression. Consistent with this finding, hypoxia greatly increased MiR-138 levels in ECs, but not in skeletal muscle C2C12 myoblasts or differentiated myotubes or primary human vascular smooth muscle cells. Transfection of a MiR-138 mimic into ECs reduced S100A1-3 'UTR reporter gene expression, while transfection of an anti MiR-138 prevented the hypoxia-induced downregulation of the reporter gene. Deletion of the 22 nucleotide putative MiR-138 target site abolished the hypoxia-induced loss of reporter gene expression. Knockdown of Hif1-α mediated by siRNA prevented loss of hypoxia-induced reporter gene expression. Conversely, specific activation of Hif1-α by a selective prolyl-hydroxylase inhibitor (IOX2) reduced reporter gene expression even in the absence of hypoxia. Finally, primary ECs transfected with a MiR-138 mimic displayed reduced tube formation when plated onto Matrigel matrix and expressed less NO when stimulated with VEGF. These effects were reversed by gene transfer of S100A1 using recombinant adenovirus. We conclude that hypoxia-induced MiR-138 is an essential mediator of EC dysfunction via its ability to target the 3'UTR of S100A1.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Isquemia/metabolismo , MicroRNAs/metabolismo , Proteínas S100/biossíntese , Regiões 3' não Traduzidas , Animais , Hipóxia Celular , Linhagem Celular , Células Endoteliais/patologia , Feminino , Humanos , Isquemia/genética , Isquemia/patologia , Masculino , Camundongos , MicroRNAs/genética , Proteínas S100/genética
19.
J Am Coll Cardiol ; 58(9): 966-73, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21851887

RESUMO

OBJECTIVES: This study investigated the hypothesis whether S100A1 gene therapy can improve pathological key features in human failing ventricular cardiomyocytes (HFCMs). BACKGROUND: Depletion of the Ca²âº-sensor protein S100A1 drives deterioration of cardiac performance toward heart failure (HF) in experimental animal models. Targeted repair of this molecular defect by cardiac-specific S100A1 gene therapy rescued cardiac performance, raising the immanent question of its effects in human failing myocardium. METHODS: Enzymatically isolated HFCMs from hearts with severe systolic HF were subjected to S100A1 and control adenoviral gene transfer and contractile performance, calcium handling, signaling, and energy homeostasis were analyzed by video-edge-detection, FURA2-based epifluorescent microscopy, phosphorylation site-specific antibodies, and mitochondrial assays, respectively. RESULTS: Genetically targeted therapy employing the human S100A1 cDNA normalized decreased S100A1 protein levels in HFCMs, reversed both contractile dysfunction and negative force-frequency relationship, and improved contractile reserve under beta-adrenergic receptor (ß-AR) stimulation independent of cAMP-dependent (PKA) and calmodulin-dependent (CaMKII) kinase activity. S100A1 reversed underlying Ca²âº handling abnormalities basally and under ß-AR stimulation shown by improved SR Ca²âº handling, intracellular Ca²âº transients, diastolic Ca²âº overload, and diminished susceptibility to arrhythmogenic SR Ca²âº leak, respectively. Moreover, S100A1 ameliorated compromised mitochondrial function and restored the phosphocreatine/adenosine-triphosphate ratio. CONCLUSIONS: Our results demonstrate for the first time the therapeutic efficacy of genetically reconstituted S100A1 protein levels in HFCMs by reversing pathophysiological features that characterize human failing myocardium. Our findings close a gap in our understanding of S100A1's effects in human cardiomyocytes and strengthen the rationale for future molecular-guided therapy of human HF.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Proteínas S100/biossíntese , Proteínas S100/genética , Cálcio/metabolismo , Células Cultivadas , Insuficiência Cardíaca/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA