Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 580(7803): 345-349, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296191

RESUMO

Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are among the most accurately controlled and best isolated quantum systems1 with low-error entanglement gates operated within tens of microseconds using the vibrational motion of few-ion crystals2,3. To exceed the level of complexity tractable by classical computers the main challenge is to realize fast entanglement operations in crystals made up of many ions (large ion crystals)4. The strong dipole-dipole interactions in polar molecule5 and Rydberg atom6,7 systems allow much faster entangling gates, yet stable state-independent confinement comparable with trapped ions needs to be demonstrated in these systems8. Here we combine the benefits of these approaches: we report a two-ion entangling gate with 700-nanosecond gate time that uses the strong dipolar interaction between trapped Rydberg ions, which we use to produce a Bell state with 78 per cent fidelity. The sources of gate error are identified and a total error of less than 0.2 per cent is predicted for experimentally achievable parameters. Furthermore, we predict that residual coupling to motional modes contributes an approximate gate error of 10-4 in a large ion crystal of 100 ions. This provides a way to speed up and scale up trapped-ion quantum computers and simulators substantially.

2.
Phys Rev Lett ; 132(13): 133401, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613299

RESUMO

We investigate the dynamics of a one-dimensional spin system with facilitation constraint that can be studied using Rydberg atoms in arrays of optical tweezer traps. The elementary degrees of freedom of the system are domains of Rydberg excitations that expand ballistically through the lattice. Because of mechanical forces, Rydberg excited atoms are coupled to vibrations within their traps. At zero temperature and large trap depth, it is known that virtually excited lattice vibrations only renormalize the timescale of the ballistic propagation. However, when vibrational excitations are initially present-i.e., when the external motion of the atoms is prepared in an excited Fock state, coherent state or thermal state-resonant scattering between spin domain walls and phonons takes place. This coherent and deterministic process, which is free from disorder, leads to a reduction of the power-law exponent characterizing the expansion of spin domains. Furthermore, the spin domain dynamics is sensitive to the coherence properties of the atoms' vibrational state, such as the relative phase of coherently superimposed Fock states. Even for a translationally invariant initial state the latter manifests macroscopically in a phase-sensitive asymmetric expansion.

3.
Phys Rev Lett ; 132(5): 050801, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364170

RESUMO

A boundary time crystal is a quantum many-body system whose dynamics is governed by the competition between coherent driving and collective dissipation. It is composed of N two-level systems and features a transition between a stationary phase and an oscillatory one. The fact that the system is open allows one to continuously monitor its quantum trajectories and to analyze their dependence on parameter changes. This enables the realization of a sensing device whose performance we investigate as a function of the monitoring time T and of the system size N. We find that the best achievable sensitivity is proportional to sqrt[T]N, i.e., it follows the standard quantum limit in time and Heisenberg scaling in the particle number. This theoretical scaling can be achieved in the oscillatory time-crystal phase and it is rooted in emergent quantum correlations. The main challenge is, however, to tap this capability in a measurement protocol that is experimentally feasible. We demonstrate that the standard quantum limit can be surpassed by cascading two time crystals, where the quantum trajectories of one time crystal are used as input for the other one.

4.
Phys Rev Lett ; 132(26): 260402, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996317

RESUMO

The state of an open quantum system undergoing an adiabatic process evolves by following the instantaneous stationary state of its time-dependent generator. This observation allows one to characterize, for a generic adiabatic evolution, the average dynamics of the open system. However, information about fluctuations of dynamical observables, such as the number of photons emitted or the time-integrated stochastic entropy production in single experimental runs, requires controlling the whole spectrum of the generator and not only the stationary state. Here, we show how such information can be obtained in adiabatic open quantum dynamics by exploiting tools from large deviation theory. We prove an adiabatic theorem for deformed generators, which allows us to encode, in a biased quantum state, the full counting statistics of generic time-integrated dynamical observables. We further compute the probability associated with an arbitrary "rare" time history of the observable and derive a dynamics which realizes it in its typical behavior. Our results provide a way to characterize and engineer adiabatic open quantum dynamics and to control their fluctuations.

5.
Phys Rev Lett ; 132(22): 223401, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877956

RESUMO

Atoms and ions confined with electric and optical fields form the basis of many current quantum simulation and computing platforms. When excited to high-lying Rydberg states, long-ranged dipole interactions emerge which strongly couple the electronic and vibrational degrees of freedom through state-dependent forces. This vibronic coupling and the ensuing hybridization of internal and external degrees of freedom manifest through clear signatures in the many-body spectrum. We illustrate this by considering the case of two trapped Rydberg ions, for which the interaction between the relative vibrations and Rydberg states realizes a quantum Rabi model. We proceed to demonstrate that the aforementioned hybridization can be probed by radio frequency spectroscopy and discuss observable spectral signatures at finite temperatures and for larger ion crystals.

6.
Phys Rev Lett ; 131(9): 093002, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721842

RESUMO

Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators. State-dependent operations are realized by exploiting electrostatic dipolar interactions that emerge, when two atoms are simultaneously excited to high-lying electronic states, so-called Rydberg states. These interactions also lead to state-dependent mechanical forces, which couple the electronic dynamics of the atoms to their vibrational motion. We explore these vibronic couplings within an artificial molecular system in which Rydberg states are excited under so-called facilitation conditions. This system, which is not necessarily self-bound, undergoes a structural transition between an equilateral triangle and an equal-weighted superposition of distorted triangular states (Jahn-Teller regime) exhibiting spin-phonon entanglement on a micrometer distance. This highlights the potential of Rydberg tweezer arrays for the study of molecular phenomena at exaggerated length scales.

7.
Phys Rev Lett ; 131(12): 120401, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37802945

RESUMO

Quantum computers have recently become available as noisy intermediate-scale quantum devices. Already these machines yield a useful environment for research on quantum systems and dynamics. Building on this opportunity, we investigate open-system dynamics that are simulated on a quantum computer by coupling a system of interest to an ancilla. After each interaction the ancilla is measured, and the sequence of measurements defines a quantum trajectory. Using a thermodynamic analogy, which identifies trajectories as microstates, we show how to bias the dynamics of the open system in order to enhance the probability of quantum trajectories with desired properties, e.g., particular measurement patterns or temporal correlations. We discuss how such a biased-generally non-Markovian-dynamics can be implemented on a unitary, gate-based quantum computer and show proof-of-principle results on the publicly accessible ibmq_jakarta machine. While our analysis is solely conducted on small systems, it highlights the challenges in controlling complex aspects of open-system dynamics on digital quantum computers.

8.
Phys Rev Lett ; 130(21): 210402, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295117

RESUMO

We consider the quantum nonequilibrium dynamics of systems where fermionic particles coherently hop on a one-dimensional lattice and are subject to dissipative processes analogous to those of classical reaction-diffusion models. Particles can either annihilate in pairs, A+A→0, or coagulate upon contact, A+A→A, and possibly also branch, A→A+A. In classical settings, the interplay between these processes and particle diffusion leads to critical dynamics as well as to absorbing-state phase transitions. Here, we analyze the impact of coherent hopping and of quantum superposition, focusing on the so-called reaction-limited regime. Here, spatial density fluctuations are quickly smoothed out due to fast hopping, which for classical systems is described by a mean-field approach. By exploiting the time-dependent generalized Gibbs ensemble method, we demonstrate that quantum coherence and destructive interference play a crucial role in these systems and are responsible for the emergence of locally protected dark states and collective behavior beyond mean field. This can manifest both at stationarity and during the relaxation dynamics. Our analytical results highlight fundamental differences between classical nonequilibrium dynamics and their quantum counterpart and show that quantum effects indeed change collective universal behavior.


Assuntos
Teoria Quântica , Difusão
9.
Phys Rev Lett ; 128(4): 040603, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148125

RESUMO

We introduce the concept of dark space phase transition, which may occur in open many-body quantum systems where irreversible decay, interactions, and quantum interference compete. Our study is based on a quantum many-body model that is inspired by classical nonequilibrium processes which feature phase transitions into an absorbing state, such as epidemic spreading. The possibility for different dynamical paths to interfere quantum mechanically results in collective dynamical behavior without classical counterpart. We identify two competing dark states, a trivial one corresponding to a classical absorbing state and an emergent one which is quantum coherent. We establish a nonequilibrium phase transition within this dark space that features a phenomenology which cannot be encountered in classical systems. Such emergent two-dimensional dark space may find technological applications, e.g., for the collective encoding of a quantum information.

10.
Phys Rev Lett ; 129(24): 243202, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563275

RESUMO

When atoms are excited to high-lying Rydberg states they interact strongly with dipolar forces. The resulting state-dependent level shifts allow us to study many-body systems displaying intriguing nonequilibrium phenomena, such as constrained spin systems, and are at the heart of numerous technological applications, e.g., in quantum simulation and computation platforms. Here, we show that these interactions also have a significant impact on dissipative effects caused by the inevitable coupling of Rydberg atoms to the surrounding electromagnetic field. We demonstrate that their presence modifies the frequency of the photons emitted from the Rydberg atoms, making it dependent on the local neighborhood of the emitting atom. Interactions among Rydberg atoms thus turn spontaneous emission into a many-body process which manifests, in a thermodynamically consistent Markovian setting, in the emergence of collective jump operators in the quantum master equation governing the dynamics. We discuss how this collective dissipation-stemming from a mechanism different from the much studied superradiance and subradiance-accelerates decoherence and affects dissipative phase transitions in Rydberg ensembles.

11.
Phys Rev Lett ; 126(23): 230601, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170184

RESUMO

Open quantum Dicke models are paradigmatic systems for the investigation of light-matter interaction in out-of-equilibrium quantum settings. Albeit being structurally simple, these models can show intriguing physics. However, obtaining exact results on their dynamical behavior is challenging, since it requires the solution of a many-body quantum system with several interacting continuous and discrete degrees of freedom. Here, we make a step forward in this direction by proving the validity of the mean-field semiclassical equations for open multimode Dicke models, which, to the best of our knowledge, so far has not been rigorously established. We exploit this result to show that open quantum multimode Dicke models can behave as associative memories, displaying a nonequilibrium phase transition toward a pattern-recognition phase.

12.
Phys Rev Lett ; 127(13): 133601, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34623844

RESUMO

We investigate the creation and control of emergent collective behavior and quantum correlations using feedback in an emitter-waveguide system using a minimal model. Employing homodyne detection of photons emitted from a laser-driven emitter ensemble into the modes of a waveguide allows for the generation of intricate dynamical phases. In particular, we show the emergence of a time-crystal phase, the transition to which is controlled by the feedback strength. Feedback enables furthermore the control of many-body quantum correlations, which become manifest in spin squeezing in the emitter ensemble. Developing a theory for the dynamics of fluctuation operators we discuss how the feedback strength controls the squeezing and investigate its temporal dynamics and dependence on system size. The largely analytical results allow to quantify spin squeezing and fluctuations in the limit of large number of emitters, revealing critical scaling of the squeezing close to the transition to the time crystal. Our study corroborates the potential of integrated emitter-waveguide systems-which feature highly controllable photon emission channels-for the exploration of collective quantum phenomena and the generation of resources, such as squeezed states, for quantum enhanced metrology.

13.
Phys Rev Lett ; 127(6): 060401, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420328

RESUMO

Ergodicity breaking and slow relaxation are intriguing aspects of nonequilibrium dynamics both in classical and quantum settings. These phenomena are typically associated with phase transitions, e.g., the emergence of metastable regimes near a first-order transition or scaling dynamics in the vicinity of critical points. Despite being of fundamental interest the associated divergent timescales are a hindrance when trying to explore steady-state properties. Here we show that the relaxation dynamics of Markovian open quantum systems can be accelerated exponentially by devising an optimal unitary transformation that is applied to the quantum system immediately before the actual dynamics. This initial "rotation" is engineered in such a way that the state of the quantum system no longer excites the slowest decaying dynamical mode. We illustrate our idea-which is inspired by the so-called Mpemba effect, i.e., water freezing faster when initially heated up-by showing how to achieve an exponential speeding-up in the convergence to stationarity in Dicke models, and how to avoid metastable regimes in an all-to-all interacting spin system.

14.
Phys Rev Lett ; 127(23): 230502, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936804

RESUMO

We employ (1+1)-dimensional quantum cellular automata to study the evolution of entanglement and coherence near criticality in quantum systems that display nonequilibrium steady-state phase transitions. This construction permits direct access to the entire space-time structure of the underlying nonequilibrium dynamics, and allows for the analysis of unconventional correlations, such as entanglement in the time direction between the "present" and the "past." We show how the uniquely quantum part of these correlations-the coherence-can be isolated and that, close to criticality, its dynamics displays a universal power-law behavior on approach to stationarity. Focusing on quantum generalizations of classical nonequilibrium systems: the Domany-Kinzel cellular automaton and the Bagnoli-Boccara-Rechtman model, we estimate the universal critical exponents for both the entanglement and coherence. As these models belong to the one-dimensional directed percolation universality class, the latter provides a key new critical exponent, one that is unique to quantum systems.

15.
Phys Rev Lett ; 126(10): 103002, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33784114

RESUMO

We explore the relaxation dynamics of elementary spin clusters in a kinetically constrained spin system. Inspired by experiments with Rydberg lattice gases, we focus on the situation in which an excited spin leads to a "facilitated" excitation of a neighboring spin. We show that even weak interactions that extend beyond nearest neighbors can have a dramatic impact on the relaxation behavior: they generate a linear potential, which under certain conditions leads to the onset of Bloch oscillations of spin clusters. These hinder the expansion of a cluster and, more generally, the relaxation of many-body states toward equilibrium. This shows that nonergodic behavior in kinetically constrained systems may occur as a consequence of the interplay between reduced connectivity of many-body states and weak interparticle interactions. We furthermore show that the emergent Bloch oscillations identified here can be detected in experiment through measurements of the Rydberg atom density and discuss how spin-orbit coupling between internal and external degrees of freedom of spin clusters can be used to control their relaxation behavior.

16.
Phys Rev Lett ; 126(23): 233404, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170186

RESUMO

Conical intersections between electronic potential energy surfaces are paradigmatic for the study of nonadiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their investigation remains challenging and requires ultrafast spectroscopy techniques. We demonstrate that trapped Rydberg ions are a platform to engineer conical intersections and to simulate their ensuing dynamics on larger length scales and timescales of the order of nanometers and microseconds, respectively; all this in a highly controllable system. Here, the shape of the potential energy surfaces and the position of the conical intersection can be tuned thanks to the interplay between the high polarizability and the strong dipolar exchange interactions of Rydberg ions. We study how the presence of a conical intersection affects both the nuclear and electronic dynamics demonstrating, in particular, how it results in the inhibition of the nuclear motion. These effects can be monitored in real time via a direct spectroscopic measurement of the electronic populations in a state-of-the-art experimental setup.

17.
Phys Rev Lett ; 127(6): 063604, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420315

RESUMO

We demonstrate a collectively encoded qubit based on a single Rydberg excitation stored in an ensemble of N entangled atoms. Qubit rotations are performed by applying microwave fields that drive excitations between Rydberg states. Coherent readout is performed by mapping the excitation into a single photon. Ramsey interferometry is used to probe the coherence of the qubit, as well as to test the robustness to external perturbations. We show that qubit coherence is preserved even as we lose atoms from the polariton mode, preserving Ramsey fringe visibility. We show that dephasing due to electric field noise scales as the fourth power of field amplitude. These results show that robust quantum information processing can be achieved via collective encoding using Rydberg polaritons, and hence this system could provide an attractive alternative coding strategy for quantum computation and networking.

18.
Phys Rev Lett ; 125(24): 240602, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412035

RESUMO

Quantum many-body systems out of equilibrium can host intriguing phenomena such as transitions to exotic dynamical states. Although this emergent behaviour can be observed in experiments, its potential for technological applications is largely unexplored. Here, we investigate the impact of collective effects on quantum engines that extract mechanical work from a many-body system. Using an optomechanical cavity setup with an interacting atomic gas as a working fluid, we demonstrate theoretically that such engines produce work under periodic driving. The stationary cycle of the working fluid features nonequilibrium phase transitions, resulting in abrupt changes of the work output. Remarkably, we find that our many-body quantum engine operates even without periodic driving. This phenomenon occurs when its working fluid enters a phase that breaks continuous time-translation symmetry: The emergent time-crystalline phase can sustain the motion of a load generating mechanical work. Our findings pave the way for designing novel nonequilibrium quantum machines.

19.
Phys Rev Lett ; 125(10): 100403, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955309

RESUMO

Motivated by recent progress in the experimental development of quantum simulators based on Rydberg atoms, we introduce and investigate the dynamics of a class of (1+1)-dimensional quantum cellular automata. These nonequilibrium many-body models, which are quantum generalizations of the Domany-Kinzel cellular automaton, possess two key features: they display stationary behavior and nonequilibrium phase transitions despite being isolated systems. Moreover, they permit the controlled introduction of local quantum correlations, which allows for the impact of quantumness on the dynamics and phase transition to be assessed. We show that projected entangled pair state tensor networks permit a natural and efficient representation of the cellular automaton. Here, the degree of quantumness and complexity of the dynamics is reflected in the difficulty of contracting the tensor network.

20.
Phys Rev Lett ; 125(3): 033602, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745411

RESUMO

Quantum spin systems with kinetic constraints have become paradigmatic for exploring collective dynamical behavior in many-body systems. Here we discuss a facilitated spin system which is inspired by recent progress in the realization of Rydberg quantum simulators. This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations. Developing a minimal model, we show that this leads to the formation of polaronic quasiparticle excitations which are formed by many-body spin states dressed by phonons. We investigate in detail the properties of these quasiparticles, such as their dispersion relation, effective mass, and the quasiparticle weight. Rydberg lattice quantum simulators are particularly suited for studying this phonon-dressed kinetically constrained dynamics as their exaggerated length scales permit the site-resolved monitoring of spin and phonon degrees of freedom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA