Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 24(12): e202300125, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946252

RESUMO

A switchable solvatochromic fluorescent dyad can be used to map ordering of lipids in vesicle membranes at a resolution better than the diffraction limit. Combining a Nile Red fluorophore with a photochromic spironaphthoxazine quencher allows the fluorescence to be controlled using visible light, via photoswitching and FRET quenching. Synthetic lipid vesicles of varying composition were imaged with an average 2.5-fold resolution enhancement, compared to the confocal images. Ratiometric detection was used to probe the membrane polarity, and domains of different lipid ordering were distinguished within the same membrane.


Assuntos
Corantes Fluorescentes , Luz , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Lipídeos
2.
Analyst ; 146(12): 3818-3822, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34036982

RESUMO

There is a lack of molecular probes for imaging bacteria, in comparison to the array of such tools available for the imaging of mammalian cells. Here, organometallic molecular probes have been developed and assessed for bacterial imaging, designed to have the potential to support multiple imaging modalities. The chemical structure of the probes is designed around a metal-naphthalimide structure. The 4-amino-1,8-naphthalimide moiety, covalently appended through a pyridine ancillary ligand, acts as a luminescent probe for super-resolution microscopy. On the other hand, the metal centre, rhenium(i) or platinum(ii) in the current study, enables techniques such as nanoSIMS. While the rhenium(i) complex was not sufficiently stable to be used as a probe, the platinum(ii) analogue showed good chemical and biological stability. Structured illumination microscopy (SIM) imaging on live Bacillus cereus confirmed the suitability of the probe for super-resolution microscopy. NanoSIMS analysis was used to monitor the uptake of the platinum(ii) complex within the bacteria and demonstrate the potential of this chemical architecture to enable multimodal imaging. The successful combination of these two moieties introduces a platform that could lead to a versatile range of multi-functional probes for bacteria.


Assuntos
Iluminação , Naftalimidas , Animais , Bactérias , Lipídeos , Luminescência , Naftalimidas/toxicidade
3.
Chemistry ; 24(21): 5569-5573, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29423968

RESUMO

Fluorescent sensors that illuminate specific molecules and chemical events allow the selective and sensitive study of the cellular environment. At the centre of this technology lies the fluorescent reporter molecule, and it is therefore crucial to provide a breadth of fluorophores with varying photophysical and biological behaviour. 4-Amino-1,8-naphthalimides are commonly employed in fluorescent sensors, but the narrow range of structural derivatives limits versatility of application. Here we report the synthesis and investigation of a set of twelve 4-amino-1,8-naphthalimides bearing an additional substituent on the aromatic core. Photophysical characterisation and time-dependent density functional theory studies provided insights into the structure-photophysical property relationships of these derivatives, which show an expanded range of emission wavelengths and other photophysical properties. These compounds could all be visualised within cells by confocal microscopy, showing cytoplasmic or lipid droplet localisation. Our studies have demonstrated that simple structural modification of 4-amino-1,8-naphthalimides provides derivatives with considerable breadth of behaviour that lend valuable versatility to the design of fluorescent sensors.

4.
Org Biomol Chem ; 16(4): 619-624, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29302671

RESUMO

Sensing hypoxia in tissues and cell models can provide insights into its role in disease states and cell development. Fluorescence imaging is a minimally-invasive method of visualising hypoxia in many biological systems. Here we present a series of improved bioreductive fluorescent sensors based on a nitro-naphthalimide structure, in which selectivity, photophysical properties, toxicity and cellular uptake are tuned through structural modifications. This new range of compounds provides improved probes for imaging and monitoring hypoxia, customised for a range of different applications. Studies in monolayers show the different reducing capabilities of hypoxia-resistant and non-resistant cell lines, and studies in tumour models show successful staining of the hypoxic region.


Assuntos
Corantes Fluorescentes/química , Hipóxia/diagnóstico por imagem , Naftalimidas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Naftalimidas/síntese química , Naftalimidas/toxicidade , Esferoides Celulares/metabolismo
5.
Chem Sci ; 14(34): 9123-9135, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655022

RESUMO

Dithienylethenes are a type of diarylethene and they constitute one of the most widely studied classes of photoswitch, yet there have been no systematic studies of how electron-donor or -acceptor substituents affect their properties. Here we report eight dithienylethenes bearing push-push, pull-pull and push-pull substitution patterns with different lengths of conjugation in the backbone and investigate their photophysical and photochemical properties. Donor-acceptor interactions in the closed forms of push-pull dithienylethenes shift their absorption spectra into the near-infrared region (λmax ≈ 800 nm). The push-pull systems also exhibit low quantum yields for photochemical electrocyclization, and computational studies indicate that this can be attributed to stabilization of the parallel, rather than anti-parallel, conformations. The pull-pull systems have the highest quantum yields for switching in both directions, ring-closure and ring-opening. The chloride salt of a pull-pull DTE, with alkynes on both arms, is the first water-soluble dithienylethene that can achieve >95% photostationary state distribution in both directions with visible light. It has excellent fatigue resistance: in aqueous solution on irradiation at 365 nm, the photochemical quantum yields for switching and decomposition are 0.15 and 2.6 × 10-5 respectively, i.e. decomposition is more than 5000 times slower than photoswitching. These properties make it a promising candidate for biological applications such as super-resolution microscopy and photopharmacology.

6.
Front Bioeng Biotechnol ; 9: 669537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164385

RESUMO

Extracellular vesicles (EVs) have been lauded as next-generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass produce EVs, i.e., to isolate, purify, and characterize them effectively. Technical limitations in comprehensive characterization of EVs lead to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were likely to contribute to the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterization approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.

7.
Chem Sci ; 11(33): 8955-8960, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34123149

RESUMO

Dyads consisting of a photochromic switch covalently linked to a fluorescent dye allow the emission from the dye to be controlled by reversible photoisomerization of the switch; one form of the switch quenches fluorescence by accepting energy from the dye. Here we investigate the use of dyads of this type for super-resolution imaging of lipid bilayers. Giant unilamellar vesicles stained with the dyads were imaged with about a two-fold resolution-enhancement compared with conventional confocal microscopy. This was achieved by exciting the fluorophore at 594 nm, using a switch activated by violet and red light (405/640 nm).

8.
Eur J Med Chem ; 162: 321-333, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448419

RESUMO

Fluorescent scriptaid analogues with excellent HDAC6 selectivity (HDAC1/6 > 500) and potency (HDAC6 IC50 < 5 nM) have been synthesised and evaluated. The highly fluorescent nature of the compounds (up to ΦF = 0.83 in DMSO and 0.38 in aqueous buffer) makes them ideally suited for cellular imaging and visualisation of their cytoplasmic localisation was readily accomplished. Whole organism imaging in zebrafish confirmed both the vascular localisation of the new inhibitors and the impact of HDAC6 inhibition on in vivo development.


Assuntos
Desacetilase 6 de Histona/antagonistas & inibidores , Hidroxilaminas/química , Quinolinas/química , Animais , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/metabolismo , Citoplasma/metabolismo , Diagnóstico por Imagem/métodos , Fluorescência , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Hidroxilaminas/síntese química , Hidroxilaminas/farmacocinética , Quinolinas/síntese química , Quinolinas/farmacocinética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA