RESUMO
[This corrects the article DOI: 10.1371/journal.pbio.2005924.].
RESUMO
The heart exhibits the highest basal oxygen (O2) consumption per tissue mass of any organ in the body and is uniquely dependent on aerobic metabolism to sustain contractile function. During acute hypoxic states, the body responds with a compensatory increase in cardiac output that further increases myocardial O2 demand, predisposing the heart to ischemic stress and myocardial dysfunction. Here, we test the utility of a novel engineered protein derived from the heme-based nitric oxide (NO)/oxygen (H-NOX) family of bacterial proteins as an O2 delivery biotherapeutic (Omniox-cardiovascular [OMX-CV]) for the hypoxic myocardium. Because of their unique binding characteristics, H-NOX-based variants effectively deliver O2 to hypoxic tissues, but not those at physiologic O2 tension. Additionally, H-NOX-based variants exhibit tunable binding that is specific for O2 with subphysiologic reactivity towards NO, circumventing a significant toxicity exhibited by hemoglobin (Hb)-based O2 carriers (HBOCs). Juvenile lambs were sedated, mechanically ventilated, and instrumented to measure cardiovascular parameters. Biventricular admittance catheters were inserted to perform pressure-volume (PV) analyses. Systemic hypoxia was induced by ventilation with 10% O2. Following 15 minutes of hypoxia, the lambs were treated with OMX-CV (200 mg/kg IV) or vehicle. Acute hypoxia induced significant increases in heart rate (HR), pulmonary blood flow (PBF), and pulmonary vascular resistance (PVR) (p < 0.05). At 1 hour, vehicle-treated lambs exhibited severe hypoxia and a significant decrease in biventricular contractile function. However, in OMX-CV-treated animals, myocardial oxygenation was improved without negatively impacting systemic or PVR, and both right ventricle (RV) and left ventricle (LV) contractile function were maintained at pre-hypoxic baseline levels. These data suggest that OMX-CV is a promising and safe O2 delivery biotherapeutic for the preservation of myocardial contractility in the setting of acute hypoxia.
Assuntos
Heme/uso terapêutico , Hipóxia/terapia , Oxigênio/uso terapêutico , Animais , Terapia Biológica/métodos , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Pulmão , Contração Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Engenharia de Proteínas/métodos , Ovinos , Resistência Vascular/efeitos dos fármacosRESUMO
BACKGROUND: The Neonatal Resuscitation Program (NRP) recommends using 100% O2 during chest compressions and adjusting FiO2 based on SpO2 after return of spontaneous circulation (ROSC). The optimal strategy for adjusting FiO2 is not known. METHODS: Twenty-five near-term lambs asphyxiated by umbilical cord occlusion to cardiac arrest were resuscitated per NRP. Following ROSC, lambs were randomized to gradual decrease versus abrupt wean to 21% O2 followed by FiO2 titration to achieve NRP SpO2 targets. Carotid blood flow and blood gases were monitored. RESULTS: Three minutes after ROSC, PaO2 was 229 ± 32 mmHg in gradual wean group compared to 57 ± 13 following abrupt wean to 21% O2 (p < 0.001). PaO2 remained high in the gradual wean group at 10 min after ROSC (110 ± 10 vs. 67 ± 12, p < 0.01) despite similar FiO2 (~0.3) in both groups. Cerebral O2 delivery (C-DO2) was higher above physiological range following ROSC with gradual wean (p < 0.05). Lower blood oxidized/reduced glutathione ratio (suggesting less oxidative stress) was observed with abrupt wean. CONCLUSION: Weaning FiO2 abruptly to 0.21 with adjustment based on SpO2 prevents surge in PaO2 and C-DO2 and minimizes oxidative stress compared to gradual weaning from 100% O2 following ROSC. Clinical trials with neurodevelopmental outcomes comparing post-ROSC FiO2 weaning strategies are warranted. IMPACT: In a lamb model of perinatal asphyxial cardiac arrest, abrupt weaning of inspired oxygen to 21% prevents excessive oxygen delivery to the brain and oxidative stress compared to gradual weaning from 100% oxygen following return of spontaneous circulation. Clinical studies assessing neurodevelopmental outcomes comparing abrupt and gradual weaning of inspired oxygen after recovery from neonatal asphyxial arrest are warranted.
Assuntos
Reanimação Cardiopulmonar , Oxigênio , Desmame do Respirador , Animais , Animais Recém-Nascidos , Gasometria , Parada Cardíaca/fisiopatologia , Oxigênio/sangue , OvinosRESUMO
The combination of perinatal acidemia with postnatal hyperoxia is associated with a higher incidence of hypoxic-ischemic encephalopathy (HIE) in newborn infants. In neonatal cardiac arrest, current International Liaison Committee on Resuscitation (ILCOR) and Neonatal Resuscitation Program (NRP) guidelines recommend increasing inspired O2 to 100% during chest compressions (CC). Following the return of spontaneous circulation (ROSC), gradual weaning from 100% O2 based on pulse oximetry (SpO2) can be associated with hyperoxia and risk for cerebral tissue injury owing to oxidative stress. We hypothesize that compared to gradual weaning from 100% O2 with titration based on preductal SpO2, abrupt or rapid weaning of inspired O2 to 21% after ROSC or use of 21% O2 during CC followed by upward titration of inspired O2 to achieve target SpO2 after ROSC will limit hyperoxia after ROSC. Nineteen lambs were randomized before delivery and asphyxial arrest was induced by umbilical cord occlusion. There was no difference in oxygenation during chest compressions between the three groups. Gradual weaning of inspired O2 from 100% O2 after ROSC resulted in supraphysiological PaO2 and higher cerebral oxygen delivery compared to 21% O2 during CC or 100% O2 during CC followed by abrupt weaning to 21% O2 after ROSC. The use of 21% O2 during CC was associated with very low PaO2 after ROSC and higher brain tissue lactic acid compared to other groups. Our findings support the current recommendations to use 100% O2 during CC and additionally suggest the benefit of abrupt decrease in inspired oxygen to 21% O2 after ROSC. Clinical studies are warranted to investigate optimal oxygen titration after chest compressions and ROSC during neonatal resuscitation.
RESUMO
Volume expanders are indicated in the delivery room when an asphyxiated neonate is not responding to the steps of neonatal resuscitation and has signs of shock or a history of acute blood loss. Fetal blood loss (e.g., feto-maternal hemorrhage) may contribute to perinatal asphyxia. Cord compression or a tight nuchal cord can selectively occlude a thin-walled umbilical vein, resulting in feto-placental transfusion and neonatal hypovolemia. For severe bradycardia or cardiac arrest secondary to fetal blood loss, Neonatal Resuscitation Program (NRP) recommends intravenous volume expanders (crystalloids such as normal saline or packed red blood cells) infused over 5 to 10 min. Failure to recognize hypovolemia and subsequent delay in volume replacement may result in unsuccessful resuscitation due to lack of adequate cardiac preload. However, excess volume load in the presence of myocardial dysfunction from hypoxic-ischemic injury may precipitate pulmonary edema and intraventricular hemorrhage (especially in preterm infants). Emergent circumstances and ethical concerns preclude the performance of prospective clinical studies evaluating volume replacement during neonatal resuscitation. Translational studies, observational data from registries and clinical trials are needed to investigate and understand the role of volume replacement in the delivery room in term and preterm neonates. This article is a narrative review of the causes and consequences of acute fetal blood loss and available evidence on volume replacement during neonatal resuscitation of asphyxiated neonates.
RESUMO
Neonatal resuscitation (NRP) guidelines suggest targeting 85-95% preductal SpO2 by 10 min after birth. Optimal oxygen saturation (SpO2) targets during resuscitation and in the post-resuscitation management of neonatal meconium aspiration syndrome (MAS) with persistent pulmonary hypertension (PPHN) remains uncertain. Our objective was to compare the time to reversal of ductal flow from fetal pattern (right-to-left), to left-to-right, and to evaluate pulmonary (QPA), carotid (QCA)and ductal (QDA) blood flows between standard (85-94%) and high (95-99%) SpO2 targets during and after resuscitation. Twelve lambs asphyxiated by endotracheal meconium instillation and cord occlusion to induce MAS and PPHN were resuscitated per NRP guidelines and were randomized to either standard (85-94%) or high (95-99%) SpO2 targets. Out of twelve lambs with MAS and PPHN, six each were randomized to standard and high SpO2 targets. Median [interquartile range] time to change in direction of blood flow across the ductus arteriosus from right-to-left, to left-to-right was significantly shorter with high SpO2 target (7.4 (4.4-10.8) min) compared to standard SpO2 target (31.5 (21-66.2) min, p = 0.03). QPA was significantly higher during the first 10 min after birth with higher SpO2 target. At 60 min after birth, the QPA, QCA and QDA were not different between the groups. To conclude, targeting SpO2 of 95-99% during and after resuscitation may hasten reversal of ductal flow in lambs with MAS and PPHN and transiently increase QPA but no differences were observed at 60 min. Clinical studies comparing low and high SpO2 targets assessing hemodynamics and neurodevelopmental outcomes are warranted.
RESUMO
The 7th edition of the Textbook of Neonatal Resuscitation recommends administration of epinephrine via an umbilical venous catheter (UVC) inserted 2-4 cm below the skin, followed by a 0.5-mL to 1-mL flush for severe bradycardia despite effective ventilation and chest compressions (CC). This volume of flush may not be adequate to push epinephrine to the right atrium in the absence of intrinsic cardiac activity during CC. The objective of our study was to evaluate the effect of 1-mL and 2.5-mL flush volumes after UVC epinephrine administration on the incidence and time to achieve return of spontaneous circulation (ROSC) in a near-term ovine model of perinatal asphyxia induced cardiac arrest. After 5 min of asystole, lambs were resuscitated per Neonatal Resuscitation Program (NRP) guidelines. During resuscitation, lambs received epinephrine through a UVC followed by 1-mL or 2.5-mL normal saline flush. Hemodynamics and plasma epinephrine concentrations were monitored. Three out of seven (43%) and 12/15 (80%) lambs achieved ROSC after the first dose of epinephrine with 1-mL and 2.5-mL flush respectively (p = 0.08). Median time to ROSC and cumulative epinephrine dose required were not different. Plasma epinephrine concentrations at 1 min after epinephrine administration were not different. From our pilot study, higher flush volume after first dose of epinephrine may be of benefit during neonatal resuscitation. More translational and clinical trials are needed.