Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Analyst ; 149(11): 3204-3213, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38655746

RESUMO

Controlling the enantiomeric purity of chiral drugs is of paramount importance in pharmaceutical chemistry. Isotropic 1H NMR spectroscopy involving chiral agents is a widely used method for discriminating enantiomers and quantifying their relative proportions. However, the relatively weak spectral separation of enantiomers (1H Δδiso(R, S)) in frequency units at low and moderate magnetic fields, as well as the lack of versatility of a majority of those agents with respect to different chemical functions, may limit the general use of this approach. In this article, we investigate the analytical potential of 19F NMR in anisotropic chiral media for the enantiomeric analysis of fluorinated active pharmaceutical ingredients (API) via two residual anisotropic NMR interactions: the chemical shift anisotropy (19F-RCSA) and dipolar coupling ((19F-19F)-RDC). Lyotropic chiral liquid crystals (CLC) based on poly-γ-benzyl-L-glutamate (PBLG) show an interesting versatility and adaptability to enantiodiscrimination as illustrated for two chiral drugs, Flurbiprofen® (FLU) and Efavirenz® (EFA), which have very different chemical functions. The approach has been tested on a routine 300 MHz NMR spectrometer equipped with a standard probe (5 mm BBFO probe) in a high-throughput context (i.e., ≈10 s of NMR experiments) while the performance for enantiomeric excess (ee) measurement is evaluated in terms of trueness and precision. The limits of detection (LOD) determined were 0.17 and 0.16 µmol ml-1 for FLU and EFA, respectively, allow working in dilute conditions even with such a short experimental duration. The enantiodiscrimination capabilities are also discussed with respect to experimental features such as CLC composition and temperature.


Assuntos
Flúor , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos , Anisotropia , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Flúor/química , Halogenação , Flurbiprofeno/química , Flurbiprofeno/análise , Cristais Líquidos/química , Princípios Ativos
2.
Chemphyschem ; 24(4): e202300040, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786233

RESUMO

The front cover artwork is provided by Dr. Philippe Lesot's group (NMR in Oriented Media, ICMMO, UMR CNRS 8182) at Université Paris-Saclay, France. The image shows four pieces of a puzzle: the magnet of an NMR spectrometer, the principle of the 1 H STD-NMR experiment and the 3D helical structure of the poly-γ-benzyl-L-glutamate polymer leading to a chiral liquid-crystalline phase that discriminates the enantiomers of a model chiral solute (1-phenethyl alcohol). Putting these pieces of the puzzle together allows us to identify the hydrogen sites of each enantiomer interacting with the polypeptide side chain. These new outcomes are a further step towards a global understanding of the chiral recognition that occurs in such media. Read the full text of the Research Article at 10.1002/cphc.202200508.

3.
Chemphyschem ; 24(4): e202200508, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36196851

RESUMO

We explore and report for the first time the use of 1 H saturation transfer difference NMR experiments (STD-NMR) in weakly aligning chiral anisotropic media to identify the hydrogen sites of enantiomers of small chiral molecules interacting with the side-chain of poly-γ-benzyl-l-glutamate (PBLG), a helically chiral polypeptide polymer. The first experimental results obtained on three model mono-stereogenic compounds outcomes are highly promising and demonstrate the possibility to track down possible differences of spatial position of enantiomers at the vicinity of the polymer side-chain. Anisotropic STD experiments appear to be well suited for rapid screening of chiral analytes that bind favorably to orienting polymeric systems, while providing new insights into the mechanism of enantio-discrimination without resorting to the time-consuming determination of molecular order parameters.

4.
Phys Chem Chem Phys ; 24(12): 7338-7348, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35262103

RESUMO

Identifying and understanding the role of key molecular factors involved in the orientation/discrimination phenomena of analytes in polymer-based chiral liquid crystals (CLCs) are essential tasks for optimizing computational predictions (molecular dynamics simulation) of the existing orienting systems, as well as designing novel helically chiral polymers as new enantiodiscriminating aligning media. From this perspective, we propose to quantify and compare the enantiodiscrimination power of four homochiral polymer-based lyotropic liquid crystals (LLCs) toward a given chiral solute using their 2H residual quadrupolar couplings (2H-RQCs) measured by anisotropic natural abundance deuterium 2D-NMR (ANAD 2D-NMR). Two families of chiral polymers are investigated in this study: (i) poly-peptide polymers (PBLG and PCBLL), and (ii) polyacetylene polymers (PDA and L-MSP, a new system never published so far). As model solute, we investigate the case of camphor, an interesting rigid bicyclic chiral molecule possessing ten 2H-RQCs (10 inequivalent monodeurated isotopomers per enantiomer). In order to analyse the orientational behaviour of each enantiomer in a single oriented sample, while simplifying the identification of the (D/L)-isomer signals on spectra, a D-isomer enriched scalemic mixture (ee(D) = 30%) was used. Orientational data of camphor in each mesophase were calculated for the first time using the computer program ConArch+, modified to accept 2H-RQCs as anisotropic data input. Differences in enantiodiscriminations provided by the four aligning systems are examined and discussed in terms of structural and chemical features between polymers. The new L-MSP mesophase described in this work exhibits very promising enantiodiscrimination capacities.


Assuntos
Cristais Líquidos , Deutério/química , Cristais Líquidos/química , Espectroscopia de Ressonância Magnética , Polímeros
5.
Chirality ; 34(2): 182-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34936130

RESUMO

The study of enantiodiscriminations in relation to various facets of enantiomorphism (chirality/prochirality) and/or molecular symmetry is an exciting area of modern organic chemistry and an ongoing challenge for nuclear magnetic resonance (NMR) spectroscopists who have developed many useful analytical approaches to solve stereochemical problems. Among them, the anisotropic NMR using chiral aligning solvents has provided a set of new and original tools by making accessible all intramolecular, order-dependent NMR interactions (anisotropic interactions), such as residual chemical shift anisotropy (RCSA), residual dipolar coupling (RDC), and residual quadrupolar coupling (RQC) for spin I > 1/2, while preserving high spectral resolution. The force of NMR in enantiopure, oriented solvents lies on its ability to orient differently in average on the NMR timescale enantiomers of chiral molecules and enantiotopic elements of prochiral ones, leading distinct NMR spectra or signals to be detected. In this compendium mainly written for all chemists playing with (pro)chirality, we overview various key aspects of NMR in weakly aligning chiral solvents as the lyotropic liquid crystals (LLCs), in particular those developed in France to study (pro)chiral compounds in relation with chemists needs: study of enantiopurity of mixture, stereochemistry, natural isotopic fractionation, as well as molecular conformation and configuration. Key representative examples covering the diversity of enantiomorphism concept, and the main and most recent applications illustrating the analytical potential of this NMR in polypeptide-based chiral liquid crystals (CLCs) are examined. The latest analytical strategy developed to determine in-solution conformational distribution of flexibles solutes using NMR in polypeptide-based aligned solvents is also proposed.


Assuntos
Cristais Líquidos , Deutério/química , Cristais Líquidos/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Estereoisomerismo
6.
Anal Bioanal Chem ; 413(25): 6379-6392, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34498104

RESUMO

Trying to answer the intriguing and fundamental question related to chiral induction/amplification at the origin of homochirality in Nature: "Is there a relationship between enantiomeric and isotopic fractionation of carbon 13 in chiral molecules?" is a difficult but stimulating challenge. Although isotropic 13C-PSIA NMR is a promising tool for the determination of (13C/12C) ratios capable of providing key 13C isotopic data for understanding the reaction mechanisms of biological processes or artificial transformations, this method does not provide access to any enantiomeric 13C isotopic data unless mirror-image isomers are first physically separated. Interestingly, 13C spectral enantiodiscriminations can be potentially performed in situ in the presence of enantiopure entities as chiral-europium complexes or chiral liquid crystals (CLCs). In this work, we explored for the first time the capabilities of the anisotropic 13C-{1H} NMR using PBLG-based lyotropic CLCs as enantiodiscriminating media in the context of the enantiomeric position-specific 13C isotope fractionation (EPSIF), within the requested precision of the order of the permil. As enantiomeric NMR signals are discriminated on the basis of a difference of 13C residual chemical shift anisotropy (13C-RCSA) prior to being deconvoluted, analysis of enantiomeric mixtures becomes possible. The analytical potential of this approach when using poly-γ-benzyl-L-glutamate (PBLG) is presented, and the preliminary quantitative results on small model chiral molecules obtained at 17.5 T with a cryogenic NMR probe are reported and discussed. A promising analytical approach based on anisotropic irm-13C-NMR spectrometry to potentially reveal the natural 13C/12C isotopic enantiofractionation effects in organic chiral molecules is proposed and discussed.

7.
Chemistry ; 26(22): 4988-4996, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31841248

RESUMO

Ruthenium nanocatalysis can provide effective deuteration and tritiation of oxazole, imidazole, triazole and carbazole substructures in complex molecules using D2 or T2 gas as isotopic sources. Depending on the substructure considered, this approach does not only represent a significant step forward in practice, with notably higher isotope uptakes, a broader substrate scope and a higher solvent applicability compared to existing procedures, but also the unique way to label important heterocycles using hydrogen isotope exchange. In terms of applications, the high incorporation of deuterium atoms, allows the synthesis of internal standards for LC-MS quantification. Moreover, the efficacy of the catalyst permits, even under subatmospheric pressure of T2 gas, the preparation of complex radiolabeled drugs owning high molar activities. From a fundamental point of view, a detailed DFT-based mechanistic study identifying undisclosed key intermediates, allowed a deeper understanding of C-H (and N-H) activation processes occurring at the surface of metallic nanoclusters.


Assuntos
Deutério/química , Compostos Heterocíclicos/química , Hidrogênio/química , Imidazóis/química , Rutênio/química , Catálise
8.
Chemphyschem ; 21(14): 1548-1563, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32633460

RESUMO

We describe three anisotropic ultrafast (UF) QUadrupolar Ordered SpectroscopY (QUOSY) 2D-NMR experiments (referred to as ADUF 2D NMR spectroscopy) designed for recording the 2 H homonuclear 2D spectra of weakly aligned (deuterated) solutes in sub-second experiment times. These new ADUF 2D experiments derive from the Q-COSY, Q-resolved and Q-DQ 2D pulse sequences (J. Am. Chem. Soc. 1999, 121, 5249) and allow the correlation between the two components of each quadrupolar doublet, and then their assignment on the basis of 2 H chemical shifts. The UF 2D pulse sequences are analyzed by using the Cartesian spin-operator formalism for spin I=1 nuclei with a small quadrupolar moment. The optimal experimental/practical conditions as well as the resolution, sensitivity and quantification issues of these ADUF 2D experiments are discussed on comparison to their conventional 2D counterparts and their analytical potentialities. Illustrative ADUF 2D experiments using deuterated achiral/prochiral/chiral solutes in poly-γ-benzyl-L-glutamate based chiral liquid crystals are presented, as well as the first examples of natural abundance deuterium (ANADUF) 2D spectrum using 14.1 T magnetic field and a basic gradient unit (53 G.cm-1 ) in oriented solvents.

9.
J Nat Prod ; 83(10): 3141-3148, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32970418

RESUMO

The determination of the 3D structure (configuration and preferred conformation) of complex natural and synthetic organic molecules is a long-standing but still challenging task for chemists, with various implications in pharmaceutical sciences whether or not these substances have specific bioactivities. Nuclear magnetic resonance (NMR) in aligning media, either lyotropic liquid crystals (LLCs) or polymer gels, in combination with molecular modeling is a unique framework for solving complex structural problems whose analytical wealth lies in the establishment of nonlocal structural correlations. As an alternative to the already well-established anisotropic NMR parameters, such as RDCs (residual dipolar couplings) and RCSAs (residual chemical shift anisotropies), it is shown here that deuterium residual quadrupolar couplings (2H-RQCs) can be extracted from 2H 2D-NMR spectra recorded at the natural abundance level in samples oriented in a homopolypeptide LLCs (poly-γ-benzyl-l-glutamate (PBLG)). These 2H-RQCs were successfully used to address nontrivial structural problems in organic molecules. The performance and scope of this new tool is examined for two natural chiral compounds of pharmaceutical interest (strychnine and artemisinin). This is the first report in which the 3D structure/relative configuration of complex bioactive molecules is unambiguously determined using only 2H-RQCs, which, in this case, are at 2H natural abundance.


Assuntos
Produtos Biológicos/química , Deutério/química , Anisotropia , Artemisininas/química , Artemisininas/farmacologia , Cristais Líquidos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Estricnina/química , Estricnina/farmacologia
10.
Angew Chem Int Ed Engl ; 59(47): 20879-20884, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32721061

RESUMO

We report the dramatic impact of the addition of N-heterocyclic carbenes (NHCs) on the reactivity and selectivity of heterogeneous Ru catalysts in the context of C-H activation reactions. Using a simple and robust method, we prepared a series of new air-stable catalysts starting from commercially available Ru on carbon (Ru/C) and differently substituted NHCs. Associated with C-H deuteration processes, depending on Ru/C-NHC ratios, the chemical outcome can be controlled to a large extent. Indeed, tuning the reactivity of the Ru catalyst with NHC enabled: 1) increased chemoselectivity and the regioselectivity for the deuteration of alcohols in organic media; 2) the synthesis of fragile pharmaceutically relevant deuterated heterocycles (azine, purine) that are otherwise completely reduced using unmodified commercial catalysts; 3) the discovery of a novel reactivity for such heterogeneous Ru catalysts, namely the selective C-1 deuteration of aldehydes.

11.
Chemphyschem ; 18(10): 1252-1266, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28257568

RESUMO

Despite its low natural abundance, deuterium NMR spectroscopy in weakly oriented (chiral) solvents gives easy access to deuterium residual quadrupolar couplings (2 H-RQCs). These are formally equivalent to one-bond residual dipolar couplings ((13 C-1 H)-RDCs) for calculation of the Saupe tensor, and provide similar information for the study of molecular structure and orientational behavior. Because the quadrupolar interaction is one order of magnitude larger than the dipolar one, 2 H-RQC analysis is a much more sensitive tool for the detection of subtle structural differences and also tiny differences in molecular alignment, such as those observed for different enantiomers in chirally aligned media. To promote the analytical advantages of anisotropic, natural-abundance deuterium NMR (NAD NMR) spectroscopy in the organic chemistry community, we describe a 2 H-RQC/DFT-based integrated computational protocol for the evaluation of the order parameters of aligned solutes by using singular-value decomposition. Several examples of 2 H-RQC-assisted analysis of chiral and prochiral molecules dissolved in various polypeptide lyotropic chiral liquid crystals are reported. The role of the molecular shape in the ordering mechanism was investigated through the determination of intertensor angles between alignment tensors and inertia tensors by using the proposed protocol.


Assuntos
Deutério/química , Cristais Líquidos/química , Peptídeos/química , Teoria Quântica , Espectroscopia de Ressonância Magnética , Modelos Moleculares
12.
J Phys Chem A ; 120(30): 6076-88, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27383731

RESUMO

A prochiral bridged compound of C2v symmetry, the norbornadiene (NBD), oriented in a chiral liquid crystal composed of various mixtures of poly-γ-benzyl-l-glutamate (PBLG) and poly-ε-carboxy-l-lysine (PCBLL), two chiral homopolypeptides, is investigated using natural abundance deuterium 2D-NMR (NAD 2D-NMR) spectroscopy. In such chiral oriented solvents, enantiotopic directions are spectrally nonequivalent, and two distinct (2)H quadrupolar doublets associated with enantioisotopomeric pairs of NBD are detected. As the two homopolypeptides have the same absolute configuration but distinct chemical functions in their side chains, the variation of residual quadrupolar couplings (RQC's) allows the determination of the relative solute-fiber affinities toward the two polypeptides in these lyotropic bipolymeric systems. Besides the experimental measurement of RQC's and the determination of their signs at each inequivalent (2)H site, the elements of the second-rank order tensor, Sαß, are calculated by assuming a modeled structure. The variations of RQC's and diagonalized order parameters, Sα'α', are followed versus the relative proportion of two polypeptides in the chiral oriented mixture. The influence of the solute mass fraction in the two-homopolypeptide oriented samples is also examined as well as the case of homogeneous and uniform achiral mesophases "PBG-PCBL" made of two pairs of mirror-image homopolypeptides (PBLG/PBDG and PCBLL/PCBDL). In the latter, the solute ordering is modulated by the proportion of each type of homopolypeptide (chemical nature and absolute configuration), leading to eliminate the enantiodiscrimination mechanisms on the average. In the frame of a model, new insights on the solute-homopolypeptide fiber interactions are discussed.


Assuntos
Deutério/química , Cristais Líquidos/química , Norbornanos/química , Peptídeos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Soluções , Solventes/química
13.
Chem Soc Rev ; 44(8): 2330-75, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25676790

RESUMO

The splitting of signals in the NMR spectra originating from enantiotopic sites in prochiral molecules when dissolved in chiral solvents is referred to as spectral enantiotopic discrimination. This phenomenon is particularly noticeable in chiral liquid crystals (CLCs) due to the combined effect of the anisotropic magnetic interactions and the ordering of the solute in the mesophase. The enantiorecognition mechanisms are different for rigid and flexible solutes. For the former, discrimination results from symmetry breaking and is restricted to solutes whose point groups belong to one of the following four ("allowed") symmetries, Cs, C2v, D2d and S4. The nature of the symmetry breaking for each one of these groups is discussed and experimental examples, using mainly (2)H 1D/2D-NMR in chiral polypeptide lyotropic mesophases, are presented and analyzed. When flexible optically active solutes undergo fast racemization (on the NMR timescale) their spectrum corresponds to that of an average prochiral molecule and may exhibit enantiotopic sites. In CLCs, such sites will become discriminated, irrespective of their average (improper) symmetry. This enantiodiscrimination results mainly from the different ordering of the interchanging enantiomers. Several examples of such flexible molecules, including solutes with average axial and planar symmetries, are commented. Dynamic processes in solution that are not accompanied by the modulation of magnetic interactions remain "NMR blind". This is sometimes the case for interconversion of enantiomers (racemization) or exchange of enantiotopic sites in isotropic solvents. The limitation can be lifted by using CLCs. In such solvents, non-equivalence between enantiomers or between enantiotopic sites is induced by the chiral environment, thus providing the necessary interactions to be modulated by the dynamic processes. Illustrative examples involving exchange of both, enantiotopic sites and enantiomers are examined. In this comprehensive review, various important aspects of enantiodiscrimination by NMR are presented. Thus the possibility to reveal enantiotopic recognition using residual dipolar couplings or to determine the absolute configuration of enantiotopic NMR signals is discussed. The various kinds of chiral mesophases able to reveal enantiotopic discrimination in guest prochiral molecules are also described and compared with each other. Finally to illustrate the high analytical potentialities of NMR in CLCs, several and various applications involving the enantiodiscrimination phenomenon are described. A strategy for assigning the NMR signals of meso compound in a meso-threo mixture of cyclic molecules is first discussed. This is followed by a description of advantages of the method for the determination of (D/H) natural isotopic fractionation in biocompounds.


Assuntos
Cristais Líquidos/química , Espectroscopia de Ressonância Magnética/métodos , Solventes/química , Estereoisomerismo
14.
Magn Reson Chem ; 53(11): 927-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26332109

RESUMO

Unique information about the atom-level structure and dynamics of solids and mesophases can be obtained by the use of multidimensional nuclear magnetic resonance (NMR) experiments. Nevertheless, the acquisition of these experiments often requires long acquisition times. We review here alternative sampling methods, which have been proposed to circumvent this issue in the case of solids and mesophases. Compared to the spectra of solutions, those of solids and mesophases present some specificities because they usually display lower signal-to-noise ratios, non-Lorentzian line shapes, lower spectral resolutions and wider spectral widths. We highlight herein the advantages and limitations of these alternative sampling methods. A first route to accelerate the acquisition time of multidimensional NMR spectra consists in the use of sparse sampling schemes, such as truncated, radial or random sampling ones. These sparsely sampled datasets are generally processed by reconstruction methods differing from the Discrete Fourier Transform (DFT). A host of non-DFT methods have been applied for solids and mesophases, including the G-matrix Fourier transform, the linear least-square procedures, the covariance transform, the maximum entropy and the compressed sensing. A second class of alternative sampling consists in departing from the Jeener paradigm for multidimensional NMR experiments. These non-Jeener methods include Hadamard spectroscopy as well as spatial or orientational encoding of the evolution frequencies. The increasing number of high field NMR magnets and the development of techniques to enhance NMR sensitivity will contribute to widen the use of these alternative sampling methods for the study of solids and mesophases in the coming years.

15.
Angew Chem Int Ed Engl ; 54(44): 13106-9, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26480341

RESUMO

The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory.


Assuntos
Pentanos/química , Pentanos/síntese química , Conformação Molecular , Estereoisomerismo
16.
Analyst ; 139(11): 2702-13, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24763860

RESUMO

Numerous contributions over the last two decades have proven that non-uniform sampling (NUS) allows significant acceleration of NMR experiments. It has been also shown that relaxation-matched NUS can improve the sensitivity when compared to conventional regularly sampled experiments acquired within the same measurement time. The method of compressed sensing (CS), recently introduced to NMR, constitutes an effective approach to NUS processing. However, the relaxation-matched sampling, providing an optimal signal-to-noise ratio, does not optimally fulfill the mathematical criteria of CS reconstruction. In this paper, we show that restricted isometry constants allow prediction of the optimal sampling time constant for exponentially decaying NUS. We also introduce criteria for the choice of the maximal indirect evolution period and we analyze the influence of the maximal indirect evolution period and the sampling time constant on the NUS sensitivity enhancement. As a practical example of application, we have chosen two natural abundance deuterium two dimensional NMR (NAD 2D-NMR) experiments using polypeptide lyotropic chiral liquid crystals (CLCs) as aligning NMR solvents, requiring superior sensitivity and resolution for a wide range of analytical domains (chirality, stereochemistry studies, isotopic fractionation, …). From an experimental viewpoint, the combination of NUS and CS can be successfully applied both for symmetrical anisotropic NAD Q-COSY Fz 2D experiments and asymmetrical NAD Q-resolved Fz ones. The possibility to boost the sensitivity/resolution of anisotropic NAD 2D-NMR experiments opens up new potentialities for the method.

17.
Magn Reson Chem ; 52(10): 595-613, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25209071

RESUMO

Correlation 2D-NMR experiments for (13)C and (2)H isotopes turn out to be powerful methods for the assignment of the quadrupolar doublets in the (2)H NMR spectra of isotopically modified (polydeuterated or perdeuterated) or unmodified solutes in homogeneously oriented solvents, such as thermotropic systems or lyotropic liquid crystals. We review here the different pulse sequences, which have been employed, their properties, and their most salient applications. These 2D-NMR sequences have been used for (i) (13)C-(2)H correlation with and without (1)H relay and (ii) (2)H-(2)H correlation with (13)C relay. The (13)C-(2) H correlation experiments without (1)H relay have been achieved for specifically deuterated or non-selectively deuterated analytes, but also more recently for isotopically unmodified ones thanks to the high sensitivity of very high-field NMR spectrometers (21.1 T) equipped with cryogenic probes. The (13)C-(2)H correlation 2D-NMR experiments are especially useful for the assignment of overcrowded deuterium spectra because the (2)H signals are correlated to (13)C signals, which benefit from a much larger dispersion of chemical shifts. In this contribution, particular attention will be paid to the use of correlation 2D-NMR experiments for (2)H and (13)C nuclei in weakly aligning, polypeptide oriented chiral solvents, because these methods are useful and original tools for enantiomeric and enantiotopic analyses.


Assuntos
Deutério/química , Cristais Líquidos/química , Peptídeos/química , Isótopos de Carbono , Espectroscopia de Ressonância Magnética , Solventes
18.
Magn Reson Chem ; 52(10): 581-94, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25155267

RESUMO

Enantiodiscrimination in the NMR spectra of flexible prochiral solutes dissolved in chiral liquid crystals (CLCs) is reviewed and compared with the analog phenomenon in such rigid solutes. In rigid prochiral solutes, the discrimination is brought about by the cancellation of improper symmetry elements upon dissolving in CLC within the frame of solute-solvent ordering mechanisms. If this reduction in symmetry renders the ordering of enantiotopic sites dissimilar, spectral discrimination may be observed. Symmetry considerations indicate that this is only possible for improper nonaxial groups lacking inversion symmetry. Nonrigid prochiral solutes consist of rapidly (on the NMR timescale) interconverting enantiomers, in which the racemization is accompanied by exchange of nonequivalent sites. These sites become, on the average, enantiotopically related, and in CLC, they exhibit spectral discrimination. The mechanism of the effect and the symmetry selection rules are different for the two cases. Specifically, the discrimination in flexible prochiral compounds results from the different ordering of the interchanging enantiomers in CLC. Using Altman's definition of average symmetry (Proc. R. Soc. A, 1967, 298, 184), selection rules for the phenomenon are derived. It follows that chiral discrimination in nonrigid prochiral solutes is much more abundant and can occur in all symmetry types except those possessing inversion. In particular, contrary to earlier thoughts, the effect can occur in compounds with axial symmetry. Illustrative examples of such studies with particular emphasis on compounds with average axial symmetry of the type D(3h), C(3v) and C(3h) are reviewed in this contribution.


Assuntos
Cristais Líquidos/química , Espectroscopia de Ressonância Magnética , Solventes/química , Estereoisomerismo
19.
J Phys Chem Lett ; 15(7): 2089-2095, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38358651

RESUMO

In this paper, we describe, for the first time, the combined and original use of spatially resolved anisotropic natural abundance deuterium (ANAD) 2D-NMR experiments and bimesophasic lyotropic chiral systems to extract two independent sets of anisotropic parameters such as 2H-RQCs from a single NMR sample. As a pioneering example, we focus on a mixture of immiscible polypeptides (PBLG) and polyacetylene helical polymers (L-MSP) dissolved in weakly polar organic solvents (chloroform). Nondeuterated (D)-(+)-camphor is used as a model chiral solute. By providing two series of 2H-RQCs, this new analytical approach paves the way for applications in 3D structure elucidation with increased reliability and also opens up original investigations in terms of spectral enantiomeric discriminations and mixing of helical polymers.

20.
Anal Chem ; 85(9): 4694-7, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23547756

RESUMO

We report the in situ and real-time monitoring of the interconversion of L- and D-alanine-d3 by alanine racemase from Bacillus stearothermophilus directly observed by (2)H NMR spectroscopy in anisotropic phase. The enantiomers are distinguished by the difference of their (2)H quadrupolar splittings in a chiral liquid crystal containing short DNA fragments. The proof-of-principle, the reliability, and the robustness of this new method is demonstrated by the determination of the turnover rates of the enzyme using the Michaelis-Menten model.


Assuntos
Alanina Racemase/química , DNA/química , Deutério/química , Ressonância Magnética Nuclear Biomolecular , Alanina/química , Alanina/metabolismo , Alanina Racemase/metabolismo , Geobacillus stearothermophilus/enzimologia , Cinética , Modelos Moleculares , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA