Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 8(1): 19-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31806639

RESUMO

Tryptophan catabolism is used by tumors to resist immune attack. It can be catalyzed by indoleamine 2,3-dioxygenase (IDO1) and tryptophan 2,3-dioxygenase (TDO). IDO1 is frequently expressed in tumors and has been widely studied as a potential therapeutic target to reduce resistance to cancer immunotherapy. In contrast, TDO expression in tumors is not well characterized. Several human tumor cell lines constitutively express enzymatically active TDO. In human tumor samples, TDO expression has previously been detected by transcriptomics, but the lack of validated antibodies has precluded detection of the TDO protein and identification of TDO-expressing cells. Here, we developed novel TDO-specific monoclonal antibodies and confirmed by immunohistochemistry the expression of TDO in the majority of human cancers. In all hepatocarcinomas (10/10), TDO was expressed by most tumor cells. Some glioblastomas (10/39) and kidney carcinomas (1/10) also expressed TDO in tumor cells themselves but only in focal tumor areas. In addition, all cancers tested contained foci of nontumoral TDO-expressing cells, which were identified as pericytes by their expression of PDGFRß and their location in vascular structures. These TDO-expressing pericytes belonged to morphologically abnormal tumor vessels and were found in high-grade tumors in the vicinity of necrotic or hemorrhagic areas, which were characterized by neoangiogenesis. We observed similar TDO-expressing pericytes in inflammatory pulmonary lesions containing granulation tissue, and in chorionic villi, two tissue types that also feature neoangiogenesis. Our results confirm TDO as a relevant immunotherapeutic target in hepatocellular carcinoma and suggest a proangiogenic role of TDO in other cancer types.See article by Schramme et al., p. 32.


Assuntos
Anticorpos Monoclonais/imunologia , Biomarcadores Tumorais/metabolismo , Pneumopatias/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/metabolismo , Pericitos/patologia , Triptofano Oxigenase/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Formação de Anticorpos , Linhagem Celular Tumoral , Humanos , Pneumopatias/imunologia , Pneumopatias/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Gradação de Tumores , Neoplasias/imunologia , Neoplasias/patologia , Pericitos/metabolismo , Triptofano/metabolismo , Triptofano Oxigenase/imunologia
2.
Mol Cancer Ther ; 17(12): 2530-2542, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232146

RESUMO

Tumors use indoleamine 2,3-dioxygenase-1 (IDO1) as a major mechanism to induce an immunosuppressive microenvironment. IDO1 expression is upregulated in many cancers and considered to be a resistance mechanism to immune checkpoint therapies. IDO1 is induced in response to inflammatory stimuli such as IFNγ and promotes immune tolerance by depleting tryptophan and producing tryptophan catabolites, including kynurenine, in the tumor microenvironment. This leads to effector T-cell anergy and enhanced Treg function through upregulation of FoxP3. As a nexus for the induction of key immunosuppressive mechanisms, IDO1 represents an important immunotherapeutic target in oncology. Here, we report the identification and characterization of the novel selective, orally bioavailable IDO1 inhibitor EOS200271/PF-06840003. It reversed IDO1-induced T-cell anergy in vitro In mice carrying syngeneic tumor grafts, PF-06840003 reduced intratumoral kynurenine levels by over 80% and inhibited tumor growth both in monotherapy and, with an increased efficacy, in combination with antibodies blocking the immune checkpoint ligand PD-L1. We demonstrate that anti-PD-L1 therapy results in increased IDO1 metabolic activity thereby providing additional mechanistic rationale for combining PD-(L)1 blockade with IDO1 inhibition in cancer immunotherapies. Supported by these preclinical data and favorable predicted human pharmacokinetic properties of PF-06840003, a phase I open-label, multicenter clinical study (NCT02764151) has been initiated.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Biocatálise , Inibidores Enzimáticos/farmacologia , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacologia , Succinimidas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Cinurenina/sangue , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estereoisomerismo , Especificidade por Substrato/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA