Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 103005, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775129

RESUMO

Aging is accompanied by chronic low-grade inflammation, but the mechanisms that allow this to persist are not well understood. Ketone bodies are alternative fuels produced when glucose is limited and improve indicators of healthspan in aging mouse models. Moreover, the most abundant ketone body, ß-hydroxybutyrate, inhibits the NLRP3 inflammasome in myeloid cells, a key potentiator of age-related inflammation. Given that myeloid cells express ketogenic machinery, we hypothesized this pathway may serve as a metabolic checkpoint of inflammation. To test this hypothesis, we conditionally ablated ketogenesis by disrupting expression of the terminal enzyme required for ketogenesis, 3-Hydroxy-3-Methylglutaryl-CoA Lyase (HMGCL). By deleting HMGCL in the liver, we validated the functional targeting and establish that the liver is the only organ that can produce the life-sustaining quantities of ketone bodies required for survival during fasting or ketogenic diet feeding. Conditional ablation of HMGCL in neutrophils and macrophages had modest effects on body weight and glucose tolerance in aging but worsened glucose homeostasis in myeloid cell-specific Hmgcl-deficient mice fed a high-fat diet. Our results suggest that during aging, liver-derived circulating ketone bodies might be more important for deactivating the NLRP3 inflammasome and controlling organismal metabolism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Corpos Cetônicos , Inflamação/genética , Glucose/metabolismo , Imunidade Inata
2.
Genes Dev ; 30(7): 827-39, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988418

RESUMO

Telomeric regions contain prominent sites of heterochromatin, which is associated with unique histone modification profiles such as the methylation of histone H3 at Lys9 (H3K9me). In fission yeast, the conserved telomeric shelterin complex recruits the histone H3K9 methyltransferase complex CLRC to establish subtelomeric heterochromatin. Although many shelterin mutations affect subtelomeric heterochromatin assembly, the mechanism remains elusive due to the diverse functions of shelterin. Through affinity purification, we found that shelterin directly associates with CLRC through the Ccq1 subunit. Surprisingly, mutations that disrupt interactions between shelterin subunits compromise subtelomeric heterochromatin without affecting CLRC interaction with shelterin component Pot1, located at chromosome ends. We further discovered that telomeric repeats are refractory to heterochromatin spreading and that artificial restoration of shelterin connections or increased heterochromatin spreading rescued heterochromatin defects in these shelterin mutants. Thus, subtelomeric heterochromatin assembly requires both the recruitment of CLRC by shelterin to chromosome ends and the proper connection of shelterin components, which allows CLRC to skip telomeric repeats to internal regions.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Heterocromatina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Montagem e Desmontagem da Cromatina/genética , Heterocromatina/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mutação , Ligação Proteica , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética
3.
Cell Commun Signal ; 21(1): 58, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915197

RESUMO

BACKGROUND: PD-L1, a transmembrane ligand for immune checkpoint receptor PD1, has been successfully targeted to activate an anti-tumor immune response in a variety of solid tumors, including non-small cell lung cancer (NSCLC). Despite the success of targeting PD-L1, only about 20% of patients achieve a durable response. The reasons for the heterogeneity in response are not understood, although some molecular subtypes (e.g., mutant EGF receptor tumors) are generally poor responders. Although PD-L1 is best characterized as a transmembrane PD1 ligand, the emerging view is that PD-L1 has functions independent of activating PD1 signaling. It is not known whether these cell-intrinsic functions of PD-L1 are shared among non-transformed and transformed cells, if they vary among cancer molecular subtypes, or if they are impacted by anti-PD-L1 therapy. METHODS: Here we use quantitative microscopy techniques and APEX2 proximity mapping to describe the behavior of PD-L1 and to identify PD-L1's proximal proteome in human lung epithelial cells. RESULTS: Our data reveal growth factor control of PD-L1 recycling as a mechanism for acute and reversible regulation of PD-L1 density on the plasma membrane. In addition, we describe novel PD-L1 biology restricted to mutant EGFR cells. Anti-PD-L1 antibody treatment of mutant EGFR cells perturbs cell intrinsic PD-L1 functions, leading to reduced cell migration, increased half-life of EGFR and increased extracellular vesicle biogenesis, whereas anti-PD-L1 antibody does not induce these changes in wild type EGFR cells. CONCLUSIONS: Growth factor acute regulation of PD-L1 trafficking, by contributing to the control of plasma membrane density, might contribute to the regulation of PD-L1's immune checkpoint activity, whereas the specific effects of anti-PD-L1 on mutant EGFR cells might contribute to the poor anti-PD-L1 response of mutant EGFR tumors. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteoma , Ligantes , Receptores ErbB/genética , Receptores ErbB/metabolismo , Pulmão/metabolismo , Antígeno B7-H1/metabolismo , Mutação
4.
Cancer Immunol Res ; 11(7): 866-874, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290119

RESUMO

Programmed death-ligand 1 (PD-L1) is a transmembrane ligand for the programmed cell death protein 1 (PD-1), a receptor that inhibits T-cell activity. The PD-L1/PD-1 immune checkpoint axis has been successfully targeted to enhance antitumor immune responses. Tethering PD-L1 to the membrane spatially restricts its ability to inhibit immune responses, and it provides for the acute and reversible modulation of PD-L1 plasma membrane density by regulation of its trafficking. PD-L1 has functions that are independent of its role as a ligand for PD-1, and control of PD-L1 residence in different intracellular compartments might contribute to the regulation of those activities. Thus, control of PD-L1 trafficking is emerging as a key feature of its biology. Herein, we focus on current understating of PD-L1 trafficking and review current attempts to therapeutically target this process in cancer cells to enhance antitumor immunity.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA