Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35406328

RESUMO

Traditionally, the drilling waste generated in oil and gas exploration operations, including spent drilling fluid, is disposed of or treated by several methods, including burial pits, landfill sites and various thermal treatments. This study investigates drilling waste valorisation and its use as filler in polymer composites. The effect of the poor particle/polymer interfacial adhesion bonding of the suspended clay in oil-based mud (OBM) slurry and the LDPE matrix is believed to be the main reason behind the poor thermo-mechanical and mechanical properties of low-density polyethylene (LDPE)/OBM slurry nanocomposites. The thermo-mechanical and mechanical performances of LDPE)/OBM slurry nanocomposites without the clay surface treatment and without using compatibilizer are evaluated and discussed. In our previous studies, it has been observed that adding thermally treated reclaimed clay from OBM waste in powder form improves both the thermal and mechanical properties of LDPE nanocomposites. However, incorporating OBM clay in slurry form in the LDPE matrix can decrease the thermal stability remarkably, which was reported recently, and thereby has increased the interest to identify the mechanical response of the composite material after adding this filler. The results show the severe deterioration of the tensile and flexural properties of the LDPE/OBM slurry composites compared to those properties of the LDPE/MMT nanocomposites in this study. It is hypothesised, based on the observation of the different test results in this study, that this deterioration in the mechanical properties of the materials was associated with the poor Van der Waals force between the polymer molecules/clay platelets and the applied force. The decohesion between the matrix and OBM slurry nanoparticles under stress conditions generated stress concentration through the void area between the matrix and nanoparticles, resulting in sample failure. Interfacial adhesion bonding appears to be a key factor influencing the mechanical properties of the manufactured nanocomposite materials.

2.
Neoplasia ; 11(11): 1174-84, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19881953

RESUMO

Infection with the Epstein-Barr virus (EBV) is a strong predisposing factor in the development of nasopharyngeal carcinoma (NPC). Many viral gene products including EBNA1, LMP1, and LMP2 have been implicated in NPC tumorigenesis, although the de novo control of these viral oncoproteins remains largely unclear. The recent discovery of EBV-encoded viral microRNA (miRNA) in lymphoid malignancies has prompted us to examine the NPC-associated EBV miRNA. Using large-scale cloning analysis on EBV-positive NPC cells, two novel EBV miRNA, now named miR-BART21 and miR-BART22, were identified. These two EBV-encoded miRNA are abundantly expressed in most NPC samples. We found two nucleotide variations in the primary transcript of miR-BART22, which we experimentally confirmed to augment its biogenesis in vitro and thus may underline the high and consistent expression of miR-BART22 in NPC tumors. More importantly, we determined that the EBV latent membrane protein 2A (LMP2A) is the putative target of miR-BART22. LMP2A is a potent immunogenic viral antigen that is recognized by the cytotoxic T cells; down-modulation of LMP2A expression by miR-BART22 may permit escape of EBV-infected cells from host immune surveillance. Taken together, we demonstrated that two newly identified EBV-encoded miRNA are highly expressed in NPC. Specific sequence variations on the prevalent EBV strain in our locality might contribute to the higher miR-BART22 expression level in our NPC samples. Our findings emphasize the role of miR-BART22 in modulating LMP2A expression, which may facilitate NPC carcinogenesis by evading the host immune response.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , MicroRNAs/genética , Neoplasias Nasofaríngeas/virologia , Proteínas da Matriz Viral/biossíntese , Sequência de Bases , Northern Blotting , Western Blotting , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Polimorfismo Genético , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Evasão Tumoral , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA